Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-10T07:50:34.568Z Has data issue: false hasContentIssue false

Neural connectivity biotypes: associations with internalizing problems throughout adolescence

Published online by Cambridge University Press:  29 May 2020

Rajpreet Chahal*
Affiliation:
Department of Human Ecology, University of California, Davis, One Shields Avenue, Davis, CA95618, USA Center for Mind and Brain, University of California, Davis, 267 Cousteau Place, Davis, CA95616, USA
David G. Weissman
Affiliation:
Department of Psychology, Harvard University, Cambridge, MA02138, USA
Michael N. Hallquist
Affiliation:
Department of Psychology, Pennsylvania State University, 309 Moore Building, University Park, PA16802, USA
Richard W. Robins
Affiliation:
Department of Psychology, University of California, Davis, One Shields Avenue, Davis, CA95618, USA
Paul D. Hastings
Affiliation:
Center for Mind and Brain, University of California, Davis, 267 Cousteau Place, Davis, CA95616, USA Department of Psychology, University of California, Davis, One Shields Avenue, Davis, CA95618, USA
Amanda E. Guyer*
Affiliation:
Department of Human Ecology, University of California, Davis, One Shields Avenue, Davis, CA95618, USA Center for Mind and Brain, University of California, Davis, 267 Cousteau Place, Davis, CA95616, USA
*
Author for correspondence: Rajpreet Chahal, E-mail: rchahal@stanford.edu; Amanda Guyer, E-mail: aeguyer@ucdavis.edu
Author for correspondence: Rajpreet Chahal, E-mail: rchahal@stanford.edu; Amanda Guyer, E-mail: aeguyer@ucdavis.edu

Abstract

Background

Neurophysiological patterns may distinguish which youth are at risk for the well-documented increase in internalizing symptoms during adolescence. Adolescents with internalizing problems exhibit altered resting-state functional connectivity (RSFC) of brain regions involved in socio-affective processing. Whether connectivity-based biotypes differentiate adolescents’ levels of internalizing problems remains unknown.

Method

Sixty-eight adolescents (37 females) reported on their internalizing problems at ages 14, 16, and 18 years. A resting-state functional neuroimaging scan was collected at age 16. Time-series data of 15 internalizing-relevant brain regions were entered into the Subgroup-Group Iterative Multi-Model Estimation program to identify subgroups based on RSFC maps. Associations between internalizing problems and connectivity-based biotypes were tested with regression analyses.

Results

Two connectivity-based biotypes were found: a Diffusely-connected biotype (N = 46), with long-range fronto-parietal paths, and a Hyper-connected biotype (N = 22), with paths between subcortical and medial frontal areas (e.g. affective and default-mode network regions). Higher levels of past (age 14) internalizing problems predicted a greater likelihood of belonging to the Hyper-connected biotype at age 16. The Hyper-connected biotype showed higher levels of concurrent problems (age 16) and future (age 18) internalizing problems.

Conclusions

Differential patterns of RSFC among socio-affective brain regions were predicted by earlier internalizing problems and predicted future internalizing problems in adolescence. Measuring connectivity-based biotypes in adolescence may offer insight into which youth face an elevated risk for internalizing disorders during this critical developmental period.

Type
Original Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alarcón, G., Cservenka, A., Rudolph, M. D., Fair, D. A., & Nagel, B. J. (2015). Developmental sex differences in resting state functional connectivity of amygdala sub-regions. NeuroImage, 115, 235244. https://doi.org/10.1016/j.neuroimage.2015.04.013.CrossRefGoogle ScholarPubMed
Alarcón, G., Pfeifer, J. H., Fair, D. A., & Nagel, B. J. (2018). Adolescent gender differences in cognitive control performance and functional connectivity between default mode and fronto-parietal networks within a self-referential context. Frontiers in Behavioral Neuroscience, 12, 73. https://doi.org/10.3389/fnbeh.2018.00073.CrossRefGoogle ScholarPubMed
Altemus, M., Sarvaiya, N., & Epperson, C. N. (2014). Sex differences in anxiety and depression clinical perspectives. Frontiers in Neuroendocrinology, 35(3), 320330. https://doi.org/10.1016/j.yfrne.2014.05.004.CrossRefGoogle ScholarPubMed
Baker, S. T. E., Lubman, D. I., Yücel, M., Allen, N. B., Whittle, S., Fulcher, B. D., … Fornito, A. (2015). Developmental changes in brain network hub connectivity in late adolescence. The Journal of Neuroscience, 35(24), 90789087. https://doi.org/10.1523/JNEUROSCI.5043-14.2015.CrossRefGoogle ScholarPubMed
Barrett, L. F., & Satpute, A. (2013). Large-scale brain networks in affective and social neuroscience: Towards an integrative functional architecture of the brain. Current Opinion in Neurobiology, 23(3), 361372. https://doi.org/10.1016/j.conb.2012.12.012.CrossRefGoogle ScholarPubMed
Berman, M. G., Peltier, S., Nee, D. E., Kross, E., Deldin, P. J., & Jonides, J. (2011). Depression, rumination and the default network. Social Cognitive and Affective Neuroscience, 6(5), 548555. https://doi.org/10.1093/scan/nsq080.CrossRefGoogle ScholarPubMed
Betts, K. S., Baker, P., Alati, R., McIntosh, J. E., Macdonald, J. A., Letcher, P., & Olsson, C. A. (2016). The natural history of internalizing behaviours from adolescence to emerging adulthood: Findings from the Australian temperament project. Psychological Medicine, 46(13), 28152827. https://doi.org/10.1017/S0033291716001495.CrossRefGoogle ScholarPubMed
Blanco, C., Wall, M. M., He, J.-P., Krueger, R. F., Olfson, M., Jin, C. J., … Merikangas, K. R. (2015). The space of common psychiatric disorders in adolescents: Comorbidity structure and individual latent liabilities. Journal of the American Academy of Child and Adolescent Psychiatry, 54(1), 4552. https://doi.org/10.1016/j.jaac.2014.10.007.CrossRefGoogle ScholarPubMed
Blouin, A. G., Perez, E. L., & Blouin, J. H. (1988). Computerized administration of the diagnostic interview schedule. Psychiatry Research, 23(3), 335344. https://doi.org/10.1016/0165-1781(88)90024-8.CrossRefGoogle ScholarPubMed
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain's default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 138. https://doi.org/10.1196/annals.1440.011.CrossRefGoogle ScholarPubMed
Burkhouse, K. L., Stange, J. P., Jacobs, R. H., Bhaumik, R., Bessette, K. L., Peters, A. T., … Langenecker, S. A. (2019). Developmental changes in resting-state functional networks among individuals with and without internalizing psychopathologies. Depression and Anxiety, 36(2), 141152. https://doi.org/10.1002/da.22864.CrossRefGoogle ScholarPubMed
Carragher, N., Krueger, R. F., Eaton, N. R., & Slade, T. (2015). Disorders without borders: Current and future directions in the meta-structure of mental disorders. Social Psychiatry and Psychiatric Epidemiology, 50(3), 339350. https://doi.org/10.1007/s00127-014-1004-z.CrossRefGoogle ScholarPubMed
Catani, M., Dell'acqua, F., & Thiebaut de Schotten, M. (2013). A revised limbic system model for memory, emotion and behaviour. Neuroscience and Biobehavioral Reviews, 37(8), 17241737. https://doi.org/10.1016/j.neubiorev.2013.07.001.CrossRefGoogle ScholarPubMed
Chahal, R, Gotlib, I. H., & Guyer, A. E. (2020). Research Review: Brain network connectivity and the heterogeneity of depression in adolescence – a precision mental health perspective. Journal of Child Psychology and Psychiatry, 117. https://doi.org/10.1111/jcpp.13250.Google Scholar
Chahal, R, Vilgis, V., Grimm, K. J., Hipwell, A. E., Forbes, E. E., Keenan, K., & Guyer, A. E. (2018). Girls’ pubertal development is associated with white matter microstructure in late adolescence. NeuroImage, 181, 659669. https://doi.org/10.1016/j.neuroimage.2018.07.050.CrossRefGoogle ScholarPubMed
Chen, L.-A., Welse, A. H., & Chan, W. (2001). Estimators for the linear regression model based on winsorized observations. Statistica Sinica, 11(1), 147172.Google Scholar
Clasen, P. C., Beevers, C. G., Mumford, J. A., & Schnyer, D. M. (2014). Cognitive control network connectivity in adolescent women with and without a parental history of depression. Developmental Cognitive Neuroscience, 7, 1322. https://doi.org/10.1016/j.dcn.2013.10.008.CrossRefGoogle ScholarPubMed
Connolly, C. G., Ho, T. C., Blom, E. H., LeWinn, K. Z., Sacchet, M. D., Tymofiyeva, O., … Yang, T. T. (2017). Resting-state functional connectivity of the amygdala and longitudinal changes in depression severity in adolescent depression. Journal of Affective Disorders, 207, 8694. https://doi.org/10.1016/j.jad.2016.09.026.CrossRefGoogle ScholarPubMed
Coutinho, J. F., Fernandesl, S. V., Soares, J. M., Maia, L., Gonçalves, Ó. F., & Sampaio, A. (2016). Default mode network dissociation in depressive and anxiety states. Brain Imaging and Behavior, 10(1), 147157. https://doi.org/10.1007/s11682-015-9375-7.CrossRefGoogle ScholarPubMed
Cullen, K. R., Westlund, M. K., Klimes-Dougan, B., Mueller, B. A., Houri, A., Eberly, L. E., & Lim, K. O. (2014). Abnormal amygdala resting-state functional connectivity in adolescent depression. JAMA Psychiatry, 71(10), 11381147. https://doi.org/10.1001/jamapsychiatry.2014.1087.CrossRefGoogle ScholarPubMed
Dwyer, D. B., Harrison, B. J., Yücel, M., Whittle, S., Zalesky, A., Pantelis, C., … Fornito, A. (2014). Large-scale brain network dynamics supporting adolescent cognitive control. The Journal of Neuroscience, 34(42), 1409614107. https://doi.org/10.1523/JNEUROSCI.1634-14.2014.CrossRefGoogle ScholarPubMed
Elliot, D., Ageton, S., & Huizinga, D. (1982). Explaining delinquency and drug Use. Boulder, CO: Behavioral Research Institute.Google Scholar
Fergusson, D. M., Horwood, L. J., Ridder, E. M., & Beautrais, A. L. (2005). Subthreshold depression in adolescence and mental health outcomes in adulthood. Archives of General Psychiatry, 62(1), 6672. https://doi.org/10.1001/archpsyc.62.1.66.CrossRefGoogle ScholarPubMed
Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., … Constable, R. T. (2015). Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity. Nature Neuroscience, 18(11), 16641671. https://doi.org/10.1038/nn.4135.CrossRefGoogle ScholarPubMed
Garber, J., & Weersing, V. R. (2010). Comorbidity of anxiety and depression in youth: Implications for treatment and prevention. Clinical Psychology: A Publication of the Division of Clinical Psychology of the American Psychological Association, 17(4), 293306. https://doi.org/10.1111/j.1468-2850.2010.01221.x.Google ScholarPubMed
Gard, A. M., Waller, R., Swartz, J. R., Shaw, D. S., Forbes, E. E., & Hyde, L. W. (2018). Amygdala functional connectivity during socioemotional processing prospectively predicts increases in internalizing symptoms in a sample of low-income, urban, young men. NeuroImage, 178, 562573. https://doi.org/10.1016/j.neuroimage.2018.05.079.CrossRefGoogle Scholar
Gates, K. M., Lane, S. T., Varangis, E., Giovanello, K., & Guiskewicz, K. (2017). Unsupervised classification during time-series model building. Multivariate Behavioral Research, 52(2), 129148. https://doi.org/10.1080/00273171.2016.1256187.CrossRefGoogle ScholarPubMed
Gates, K. M., & Molenaar, P. C. M. (2012). Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heterogeneous samples. NeuroImage, 63(1), 310319. https://doi.org/10.1016/j.neuroimage.2012.06.026.CrossRefGoogle ScholarPubMed
Geng, H., Li, X., Chen, J., Li, X., & Gu, R. (2016). Decreased intra- and inter-salience network functional connectivity is related to trait anxiety in adolescents. Frontiers in Behavioral Neuroscience, 9, 110. https://doi.org/10.3389/fnbeh.2015.00350.CrossRefGoogle ScholarPubMed
Goschke, T. (2014). Dysfunctions of decision-making and cognitive control as transdiagnostic mechanisms of mental disorders: Advances, gaps, and needs in current research. International Journal of Methods in Psychiatric Research, 23(Suppl 1), 4157. https://doi.org/10.1002/mpr.1410.CrossRefGoogle ScholarPubMed
Goulden, N., Khusnulina, A., Davis, N. J., Bracewell, R. M., Bokde, A. L., McNulty, J. P., & Mullins, P. G. (2014). The salience network is responsible for switching between the default mode network and the central executive network: Replication from DCM. NeuroImage, 99, 180190. https://doi.org/10.1016/j.neuroimage.2014.05.052.CrossRefGoogle Scholar
Gratton, C., Laumann, T. O., Nielsen, A. N., Greene, D. J., Gordon, E. M., Gilmore, A. W., … Petersen, S. E. (2018). Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation. Neuron, 98(2), 439452.e5. https://doi.org/10.1016/j.neuron.2018.03.035.CrossRefGoogle ScholarPubMed
Greening, S. G., & Mitchell, D. G. V. (2015). A network of amygdala connections predict individual differences in trait anxiety. Human Brain Mapping, 36(12), 48194830. https://doi.org/10.1002/hbm.22952.CrossRefGoogle ScholarPubMed
Hankin, B. L., Snyder, H. R., Gulley, L. D., Schweizer, T. H., Bijttebier, P., Nelis, S., … Vasey, M. W. (2016). Understanding comorbidity among internalizing problems: Integrating latent structural models of psychopathology and risk mechanisms. Development and Psychopathology, 28(4 Pt 1), 9871012. https://doi.org/10.1017/S0954579416000663.CrossRefGoogle ScholarPubMed
Hirshfeld-Becker, D. R., Gabrieli, J. D. E., Shapero, B. G., Biederman, J., Whitfield-Gabrieli, S., & Chai, X. J. (2019). Intrinsic functional brain connectivity predicts onset of major depression disorder in adolescence: A pilot study. Brain Connectivity, 9(5), 388398. https://doi.org/10.1089/brain.2018.0646.CrossRefGoogle ScholarPubMed
Ho, T. C., Connolly, C. G., Henje Blom, E., LeWinn, K. Z., Strigo, I. A., Paulus, M. P., … Yang, T. T. (2015). Emotion-dependent functional connectivity of the default mode network in adolescent depression. Biological Psychiatry, 78(9), 635646. https://doi.org/10.1016/j.biopsych.2014.09.002.CrossRefGoogle ScholarPubMed
Jacobs, R. H., Jenkins, L. M., Gabriel, L. B., Barba, A., Ryan, K. A., Weisenbach, S. L., … Welsh, R. C. (2014). Increased coupling of intrinsic networks in remitted depressed youth predicts rumination and cognitive control. PloS One, 9(8), e104366. https://doi.org/10.1371/journal.pone.0104366.CrossRefGoogle ScholarPubMed
Jamnik, M. R., & DiLalla, L. F. (2019). Health outcomes associated with internalizing problems in early childhood and adolescence. Frontiers in Psychology, 10, 60. https://doi.org/10.3389/fpsyg.2019.00060.CrossRefGoogle ScholarPubMed
Jarcho, J. M., Romer, A. L., Shechner, T., Galvan, A., Guyer, A. E., Leibenluft, E., … Nelson, E. E. (2015). Forgetting the best when predicting the worst: Preliminary observations on neural circuit function in adolescent social anxiety. Developmental Cognitive Neuroscience, 13, 2131. https://doi.org/10.1016/j.dcn.2015.03.002.CrossRefGoogle ScholarPubMed
Kim, J., Zhu, W., Chang, L., Bentler, P. M., & Ernst, T. (2007). Unified structural equation modeling approach for the analysis of multisubject, multivariate functional MRI data. Human Brain Mapping, 28(2), 8593. https://doi.org/10.1002/hbm.20259.CrossRefGoogle ScholarPubMed
Kotov, R., Krueger, R. F., Watson, D., Achenbach, T. M., Althoff, R. R., Bagby, R. M., … Zimmerman, M. (2017). The hierarchical taxonomy of psychopathology (HiTOP): A dimensional alternative to traditional nosologies. Journal of Abnormal Psychology, 126(4), 454477. https://doi.org/10.1037/abn0000258.CrossRefGoogle ScholarPubMed
Ladouceur, C. D., Dahl, R. E., Williamson, D. E., Birmaher, B., Ryan, N. D., & Casey, B. J. (2005). Altered emotional processing in pediatric anxiety, depression, and comorbid anxiety-depression. Journal of Abnormal Child Psychology, 33(2), 165177. https://doi.org/10.1007/s10802-005-1825-z.CrossRefGoogle ScholarPubMed
Lahey, B. B., Applegate, B., Waldman, I. D., Loft, J. D., Hankin, B. L., & Rick, J. (2004). The structure of child and adolescent psychopathology: Generating new hypotheses. Journal of Abnormal Psychology, 113(3), 358385. https://doi.org/10.1037/0021-843X.113.3.358.CrossRefGoogle ScholarPubMed
Lahey, B. B., Rathouz, P. J., Van Hulle, C., Urbano, R. C., Krueger, R. F., Applegate, B., … Waldman, I. D. (2008). Testing structural models of DSM-IV symptoms of common forms of child and adolescent psychopathology. Journal of Abnormal Child Psychology, 36(2), 187206. https://doi.org/10.1007/s10802-007-9169-5.CrossRefGoogle ScholarPubMed
Larsen, B., & Luna, B. (2018). Adolescence as a neurobiological critical period for the development of higher-order cognition. Neuroscience & Biobehavioral Reviews, 94, 179195. https://doi.org/10.1016/j.neubiorev.2018.09.005.CrossRefGoogle ScholarPubMed
Lin, A., Yung, A. R., Wigman, J. T. W., Killackey, E., Baksheev, G., & Wardenaar, K. J. (2014). Validation of a short adaptation of the mood and anxiety symptoms questionnaire (MASQ) in adolescents and young adults. Psychiatry Research, 215(3), 778783. https://doi.org/10.1016/j.psychres.2013.12.018.CrossRefGoogle Scholar
Liu, W., Yin, D., Cheng, W., Fan, M., You, M., Men, W., … Zhang, F. (2015). Abnormal functional connectivity of the amygdala-based network in resting-state fMRI in adolescents with generalized anxiety disorder. Medical Science Monitor, 21, 459467. https://doi.org/10.12659/MSM.893373.Google ScholarPubMed
Maresh, E. L., Allen, J. P., & Coan, J. A. (2014). Increased default mode network activity in socially anxious individuals during reward processing. Biology of Mood & Anxiety Disorders, 4(1), 7. https://doi.org/10.1186/2045-5380-4-7.CrossRefGoogle ScholarPubMed
McEvoy, P. M., Salmon, K., Hyett, M. P., Jose, P. E., Gutenbrunner, C., Bryson, K., & Dewhirst, M. (2019). Repetitive negative thinking as a transdiagnostic predictor of depression and anxiety symptoms in adolescents. Assessment, 26(2), 324335. https://doi.org/10.1177/1073191117693923.CrossRefGoogle ScholarPubMed
Morgan, J. K., Shaw, D. S., Olino, T. M., Musselman, S. C., Kurapati, N. T., & Forbes, E. E. (2016). History of depression and frontostriatal connectivity during reward processing in late adolescent boys. Journal of Clinical Child and Adolescent Psychology, 45(1), 5968. https://doi.org/10.1080/15374416.2015.1030753.CrossRefGoogle ScholarPubMed
Ordaz, S. J., LeMoult, J., Colich, N. L., Prasad, G., Pollak, M., Popolizio, M., … Gotlib, I. H. (2016). Ruminative brooding is associated with salience network coherence in early pubertal youth. Social Cognitive and Affective Neuroscience, 12(2), 298310. https://doi.org/10.1093/scan/nsw133.CrossRefGoogle Scholar
Pannekoek, J. N., van der Werff, S. J. A., Meens, P. H. F., van den Bulk, B. G., Jolles, D. D., Veer, I. M., … Vermeiren, R. R. J. M. (2014). Aberrant resting-state functional connectivity in limbic and salience networks in treatment—naïve clinically depressed adolescents. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 55(12), 13171327. https://doi.org/10.1111/jcpp.12266.CrossRefGoogle ScholarPubMed
Parrish, K. H., Atherton, O. E., Quintana, A., Conger, R. D., & Robins, R. W. (2016). Reciprocal relations between internalizing symptoms and frequency of alcohol use: Findings from a longitudinal study of Mexican-origin youth. Psychology of Addictive Behaviors, 30(2), 203208. https://doi.org/10.1037/adb0000138.CrossRefGoogle ScholarPubMed
Petersen, A. C., Crockett, L., Richards, M., & Boxer, A. (1988). A self-report measure of pubertal status: Reliability, validity, and initial norms. Journal of Youth and Adolescence, 17, 117133.CrossRefGoogle ScholarPubMed
Petersen, I. T., Lindhiem, O., LeBeau, B., Bates, J. E., Pettit, G. S., Lansford, J. E., & Dodge, K. A. (2018). Development of internalizing problems from adolescence to emerging adulthood: Accounting for heterotypic continuity with vertical scaling. Developmental Psychology, 54(3), 586599. https://doi.org/10.1037/dev0000449.CrossRefGoogle ScholarPubMed
Philippi, C. L., Tranel, D., Duff, M., & Rudrauf, D. (2015). Damage to the default mode network disrupts autobiographical memory retrieval. Social Cognitive and Affective Neuroscience, 10(3), 318326. https://doi.org/10.1093/scan/nsu070.CrossRefGoogle Scholar
Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage, 59(3), 21422154. https://doi.org/10.1016/j.neuroimage.2011.10.018.CrossRefGoogle ScholarPubMed
Prenoveau, J. M., Craske, M. G., Zinbarg, R. E., Mineka, S., Rose, R. D., & Griffith, J. W. (2011). Are anxiety and depression just as stable as personality during late adolescence? Results from a three-year longitudinal latent variable study. Journal of Abnormal Psychology, 120(4), 832843. https://doi.org/10.1037/a0023939.CrossRefGoogle ScholarPubMed
Price, R. B., Gates, K., Kraynak, T. E., Thase, M. E., & Siegle, G. J. (2017). Data-driven subgroups in depression derived from directed functional connectivity paths at rest. Neuropsychopharmacology, 42(13), 26232632. https://doi.org/10.1038/npp.2017.97.CrossRefGoogle ScholarPubMed
Price, R. B., Lane, S., Gates, K., Kraynak, T. E., Horner, M. S., Thase, M. E., & Siegle, G. J. (2017). Parsing heterogeneity in the brain connectivity of depressed and healthy adults during positive mood. Biological Psychiatry, 81(4), 347357. https://doi.org/10.1016/j.biopsych.2016.06.023CrossRefGoogle ScholarPubMed
Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(1), 136. https://doi.org/10.18637/jss.v048.i02.CrossRefGoogle Scholar
Roy, A. K., Fudge, J. L., Kelly, C., Perry, J. S. A., Daniele, T., Carlisi, C., … Ernst, M. (2013). Intrinsic functional connectivity of amygdala-based networks in adolescent generalized anxiety disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 52(3), 290299.e2. https://doi.org/10.1016/j.jaac.2012.12.010.CrossRefGoogle ScholarPubMed
Rutter, M., Caspi, A., & Moffitt, T. E. (2003). Using sex differences in psychopathology to study causal mechanisms: Unifying issues and research strategies. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 44(8), 10921115.CrossRefGoogle ScholarPubMed
Salk, R. H., Hyde, J. S., & Abramson, L. Y. (2017). Gender differences in depression in representative national samples: Meta-analyses of diagnoses and symptoms. Psychological Bulletin, 143(8), 783822. https://doi.org/10.1037/bul0000102.CrossRefGoogle ScholarPubMed
Scheuer, H., Alarcón, G., Demeter, D. V., Earl, E., Fair, D. A., & Nagel, B. J. (2017). Reduced fronto-amygdalar connectivity in adolescence is associated with increased depression symptoms over time. Psychiatry Research. Neuroimaging, 266, 3541. https://doi.org/10.1016/j.pscychresns.2017.05.012.CrossRefGoogle ScholarPubMed
Schultz, D. H., Ito, T., Solomyak, L. I., Chen, R. H., Mill, R. D., Anticevic, A., & Cole, M. W. (2018). Global connectivity of the frontoparietal cognitive control network is related to depression symptoms in the general population. Network Neuroscience, 3(1), 107123. https://doi.org/10.1162/netn_a_00056.CrossRefGoogle Scholar
Song, Z., Zhang, M., & Huang, P. (2016). Aberrant emotion networks in early major depressive disorder patients: An eigenvector centrality mapping study. Translational Psychiatry, 6, e819. https://doi.org/10.1038/tp.2016.81.CrossRefGoogle ScholarPubMed
Stein, K., & Fazel, M. (2015). Depression in young people often goes undetected. The Practitioner, 259(1782), 1722, 2–3.Google ScholarPubMed
Strikwerda-Brown, C., Davey, C. G., Whittle, S., Allen, N. B., Byrne, M. L., Schwartz, O. S., … Harrison, B. J. (2015). Mapping the relationship between subgenual cingulate cortex functional connectivity and depressive symptoms across adolescence. Social Cognitive and Affective Neuroscience, 10(7), 961968. https://doi.org/10.1093/scan/nsu143.CrossRefGoogle ScholarPubMed
Strimbu, K., & Tavel, J. A. (2010). What are biomarkers? Current Opinion in HIV and AIDS, 5(6), 463466. https://doi.org/10.1097/COH.0b013e32833ed177.CrossRefGoogle ScholarPubMed
Suprano, I., Delon-Martin, C., Kocevar, G., Stamile, C., Hannoun, S., Achard, S., … Sappey-Marinier, D. (2019). Topological modification of brain networks organization in children with high intelligence quotient: A resting-state fMRI study. Frontiers in Human Neuroscience, 13, 112. https://doi.org/10.3389/fnhum.2019.00241.CrossRefGoogle ScholarPubMed
Tang, S., Lu, L., Zhang, L., Hu, X., Bu, X., Li, H., … Huang, X. (2018). Abnormal amygdala resting-state functional connectivity in adults and adolescents with major depressive disorder: A comparative meta-analysis. EBioMedicine, 36, 436445. https://doi.org/10.1016/j.ebiom.2018.09.010.CrossRefGoogle ScholarPubMed
Watson, D., Weber, K., Assenheimer, J. S., Clark, L. A., Strauss, M. E., & McCormick, R. A. (1995). Testing a tripartite model: I. Evaluating the convergent and discriminant validity of anxiety and depression symptom scales. Journal of Abnormal Psychology, 104(1), 314.CrossRefGoogle ScholarPubMed
Weissman, D. G., Conger, R. D., Robins, R. W., Hastings, P. D., & Guyer, A. E. (2018). Income change alters default mode network connectivity for adolescents in poverty. Developmental Cognitive Neuroscience, 30, 9399. https://doi.org/10.1016/j.dcn.2018.01.008.CrossRefGoogle ScholarPubMed
Weissman, D. G., Schriber, R. A., Fassbender, C., Atherton, O., Krafft, C., Robins, R. W., … Guyer, A. E. (2015). Earlier adolescent substance use onset predicts stronger connectivity between reward and cognitive control brain networks. Developmental Cognitive Neuroscience, 16, 121129. https://doi.org/10.1016/j.dcn.2015.07.002.CrossRefGoogle ScholarPubMed
Williams, L. M. (2017). Defining biotypes for depression and anxiety based on large-scale circuit dysfunction: A theoretical review of the evidence and future directions for clinical translation. Depression and Anxiety, 34(1), 924. https://doi.org/10.1002/da.22556.CrossRefGoogle ScholarPubMed
Winefield, H. R., Hammarström, A., Nygren, K., & Hägglöf, B. (2013). Internalized symptoms in adolescence as predictors of mental health in adulthood in the Northern Swedish cohort. Health, 05(07), 11641171. https://doi.org/10.4236/health.2013.57157.CrossRefGoogle Scholar
Woodcock, R., McGrew, K., & Mather, N. (2001). Woodcock-Johnson III tests of cognitive abilities. Ithaca, IL: Riverside Publishing.Google Scholar
Yale, C., & Forsyth, A. (1976). Winsorized regression. Technometrics, 18(3), 291300.CrossRefGoogle Scholar
Yang, F., Fan, L., Zhai, T., Lin, Y., Wang, Y., Ma, J., … Dai, Z. (2018). Decreased intrinsic functional connectivity in first-episode, drug-naive adolescents with generalized anxiety disorder. Frontiers in Human Neuroscience, 12, 539. https://doi.org/10.3389/fnhum.2018.00539.CrossRefGoogle ScholarPubMed
Zald, D. H., & Treadway, M. T. (2017). Reward processing, neuroeconomics, and psychopathology. Annual Review of Clinical Psychology, 13, 471495. https://doi.org/10.1146/annurev-clinpsy-032816-044957.CrossRefGoogle ScholarPubMed
Supplementary material: File

Chahal et al. supplementary materia

Chahal et al. supplementary materia

Download Chahal et al. supplementary materia(File)
File 10.3 MB