Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-08T17:55:24.809Z Has data issue: false hasContentIssue false

Sensory gating, neurocognition, social cognition and real-life functioning: a 2-year follow-up of early psychosis

Published online by Cambridge University Press:  18 November 2021

Shen Li
Affiliation:
Schizophrenia and Bipolar Disorders Program, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA Department of Psychiatry, College of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
Shi Yu Chan
Affiliation:
Schizophrenia and Bipolar Disorders Program, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA Translational Neurosciences, Singapore Institute for Clinical Sciences 117609, Singapore
Amy Higgins
Affiliation:
Schizophrenia and Bipolar Disorders Program, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
Mei-Hua Hall*
Affiliation:
Schizophrenia and Bipolar Disorders Program, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
*
Author for correspondence: Mei-Hua Hall, E-mail: mhall@mclean.harvard.edu

Abstract

Background

Diminished sensory gating (SG) is a robust finding in psychotic disorders, but studies of early psychosis (EP) are rare. It is unknown whether SG deficit leads to poor neurocognitive, social, and/or real-world functioning. This study aimed to explore the longitudinal relationships between SG and these variables.

Methods

Seventy-nine EP patients and 88 healthy controls (HCs) were recruited at baseline. Thirty-three and 20 EP patients completed 12-month and 24-month follow-up, respectively. SG was measured using the auditory dual-click (S1 & S2) paradigm and quantified as P50 ratio (S2/S1) and difference (S1-S2). Cognition, real-life functioning, and symptoms were assessed using the MATRICS Consensus Cognitive Battery, Global Functioning: Social (GFS) and Role (GFR), Multnomah Community Ability Scale (MCAS), Awareness of Social Inference Test (TASIT), and the Positive and Negative Syndrome Scale (PANSS). Analysis of variance (ANOVA), chi-square, mixed model, correlation and regression analyses were used for group comparisons and relationships among variables controlling for potential confounding variables.

Results

In EP patients, P50 ratio (p < 0.05) and difference (p < 0.001) at 24-month showed significant differences compared with that at baseline. At baseline, P50 indices (ratio, S1-S2 difference, S1) were independently associated with GFR in HCs (all p < 0.05); in EP patients, S2 amplitude was independently associated with GFS (p = 0.037). At 12-month and 24-month, P50 indices (ratio, S1, S2) was independently associated with MCAS (all p < 0.05). S1-S2 difference was a trending predictor of future function (GFS or MCAS).

Conclusions

SG showed progressive reduction in EP patients. P50 indices were related to real-life functioning.

Type
Original Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, L. E., Olincy, A., Cawthra, E. M., McRae, K. A., Harris, J. G., Nagamoto, H. T., … Freedman, R. (2004). Varied effects of atypical neuroleptics on P50 auditory gating in schizophrenia patients. American Journal of Psychiatry, 161(10), 18221828. doi: 10.1176/ajp.161.10.1822CrossRefGoogle ScholarPubMed
Adler, L. E., Olincy, A., Waldo, M., Harris, J. G., Griffith, J., Stevens, K., … Freedman, R. (1998). Schizophrenia, sensory gating, and nicotinic receptors. Schizophrenia Bulletin, 24(2), 189202. doi: 10.1093/oxfordjournals.schbul.a033320CrossRefGoogle ScholarPubMed
Adler, L. E., Pachtman, E., Franks, R. D., Pecevich, M., Waldo, M. C., & Freedman, R. (1982). Neurophysiological evidence for a defect in neuronal mechanisms involved in sensory gating in schizophrenia. Biological Psychiatry, 17(6), 639654, Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/7104417.Google ScholarPubMed
Adolphs, R. (2009). The social brain: Neural basis of social knowledge. Annual Review of Psychology, 60, 693716. doi: 10.1146/annurev.psych.60.110707.163514CrossRefGoogle ScholarPubMed
Arnfred, S. M., Chen, A. C., Glenthoj, B. Y., & Hemmingsen, R. P. (2003). Normal p50 gating in unmedicated schizophrenia outpatients. American Journal of Psychiatry, 160(12), 22362238. doi: 10.1176/appi.ajp.160.12.2236CrossRefGoogle ScholarPubMed
Atagun, M. I., Drukker, M., Hall, M. H., Altun, I. K., Tatli, S. Z., Guloksuz, S., … van Amelsvoort, T. (2020). Meta-analysis of auditory P50 sensory gating in schizophrenia and bipolar disorder. Psychiatry Research Neuroimaging, 300, 111078. doi: 10.1016/j.pscychresns.2020.111078CrossRefGoogle ScholarPubMed
Barker, S., Barron, N., McFarland, B. H., Bigelow, D. A., & Carnahan, T. (1994). A community ability scale for chronically mentally ill consumers: Part II. Applications. Community Mental Health Journal, 30(5), 459472. doi: 10.1007/BF02189063CrossRefGoogle ScholarPubMed
Blair, J. R., & Spreen, O. (1989). Predicting premorbid IQ: A revision of the national adult reading test. Clinical Neuropsychologist, 3(2), 129136. doi: 10.1080/13854048908403285CrossRefGoogle Scholar
Bora, E., Lin, A., Wood, S. J., Yung, A. R., McGorry, P. D., & Pantelis, C. (2014). Cognitive deficits in youth with familial and clinical high risk to psychosis: A systematic review and meta-analysis. Acta Psychiatrica Scandinavica, 130(1), 115. doi: 10.1111/acps.12261CrossRefGoogle ScholarPubMed
Bora, E., & Murray, R. M. (2014). Meta-analysis of cognitive deficits in ultra-high risk to psychosis and first-episode psychosis: Do the cognitive deficits progress over, or after, the onset of psychosis? Schizophrenia Bulletin, 40(4), 744755. doi: 10.1093/schbul/sbt085CrossRefGoogle ScholarPubMed
Boutros, N., Zouridakis, G., Rustin, T., Peabody, C., & Warner, D. (1993). The P50 component of the auditory evoked potential and subtypes of schizophrenia. Psychiatry Research, 47(3), 243254. doi: 10.1016/0165-1781(93)90082-rCrossRefGoogle ScholarPubMed
Boutros, N. N., & Belger, A. (1999). Midlatency evoked potentials attenuation and augmentation reflect different aspects of sensory gating. Biological Psychiatry, 45(7), 917922. doi: 10.1016/s0006-3223(98)00253-4CrossRefGoogle ScholarPubMed
Brockhaus-Dumke, A., Schultze-Lutter, F., Mueller, R., Tendolkar, I., Bechdolf, A., Pukrop, R., … Ruhrmann, S. (2008). Sensory gating in schizophrenia: P50 and N100 gating in antipsychotic-free subjects at risk, first-episode, and chronic patients. Biological Psychiatry, 64(5), 376384. doi: 10.1016/j.biopsych.2008.02.006CrossRefGoogle ScholarPubMed
Carlson, G. A., Kotov, R., Chang, S. W., Ruggero, C., & Bromet, E. J. (2012). Early determinants of four-year clinical outcomes in bipolar disorder with psychosis. Bipolar Disorder, 14(1), 1930. doi: 10.1111/j.1399-5618.2012.00982.xCrossRefGoogle ScholarPubMed
Carrion, R. E., Auther, A. M., McLaughlin, D., Olsen, R., Addington, J., Bearden, C. E., … Cornblatt, B. A. (2019). The global functioning: Social and role scales-further validation in a large sample of adolescents and young adults at clinical high risk for psychosis. Schizophrenia Bulletin, 45(4), 763772. doi: 10.1093/schbul/sby126CrossRefGoogle Scholar
Chang, Q., Liu, M., Tian, Q., Wang, H., Luo, Y., Zhang, J., & Wang, C. (2019). EEG-based Brain functional connectivity in first-episode schizophrenia patients, ultra-high-risk individuals, and healthy controls during P50 suppression. Frontiers in Human Neuroscience, 13, 379. doi: 10.3389/fnhum.2019.00379CrossRefGoogle ScholarPubMed
Cheng, C. H., Chan, P. S., Liu, C. Y., & Hsu, S. C. (2016). Auditory sensory gating in patients with bipolar disorders: A meta-analysis. Journal of Affective Disorders, 203, 199203. doi: 10.1016/j.jad.2016.06.010CrossRefGoogle ScholarPubMed
Clementz, B. A., Blumenfeld, L. D., & Cobb, S. (1997). The gamma-band response may account for poor P50 suppression in schizophrenia. Neuroreport, 8(18), 38893893. doi: 10.1097/00001756-199712220-00010CrossRefGoogle ScholarPubMed
Clementz, B. A., Geyer, M. A., & Braff, D. L. (1998a). Multiple site evaluation of P50 suppression among schizophrenia and normal comparison subjects. Schizophrenia Research, 30(1), 7180. doi: 10.1016/s0920-9964(97)00122-9CrossRefGoogle ScholarPubMed
Clementz, B. A., Geyer, M. A., & Braff, D. L. (1998b). Poor P50 suppression among schizophrenia patients and their first-degree biological relatives. American Journal of Psychiatry, 155(12), 16911694. doi: 10.1176/ajp.155.12.1691CrossRefGoogle ScholarPubMed
Cornblatt, B. A., Auther, A. M., Niendam, T., Smith, C. W., Zinberg, J., Bearden, C. E., & Cannon, T. D. (2007). Preliminary findings for two new measures of social and role functioning in the prodromal phase of schizophrenia. Schizophrenia Bulletin, 33(3), 688702. doi: 10.1093/schbul/sbm029CrossRefGoogle ScholarPubMed
Crocker, C. E., & Tibbo, P. G. (2018). The interaction of gender and cannabis in early phase psychosis. Schizophrenia Research, 194, 1825. doi: 10.1016/j.schres.2017.04.046CrossRefGoogle ScholarPubMed
Dalecki, A., Croft, R. J., & Johnstone, S. J. (2011). An evaluation of P50 paired-click methodologies. Psychophysiology, 48(12), 16921700. doi: 10.1111/j.1469-8986.2011.01262.xCrossRefGoogle ScholarPubMed
Dalecki, A., Green, A. E., Johnstone, S. J., & Croft, R. J. (2016). The relevance of attention in schizophrenia P50 paired stimulus studies. Clinical Neurophysiology, 127(6), 24482454. doi: 10.1016/j.clinph.2016.03.013CrossRefGoogle ScholarPubMed
de Wilde, O. M., Bour, L. J., Dingemans, P. M., Koelman, J. H., & Linszen, D. H. (2007). Failure to find P50 suppression deficits in young first-episode patients with schizophrenia and clinically unaffected siblings. Schizophrenia Bulletin, 33(6), 13191323. doi: 10.1093/schbul/sbm001CrossRefGoogle ScholarPubMed
During, S., Glenthoj, B. Y., Andersen, G. S., & Oranje, B. (2014). Effects of dopamine D2/D3 blockade on human sensory and sensorimotor gating in initially antipsychotic-naive, first-episode schizophrenia patients. Neuropsychopharmacology, 39(13), 30003008. doi: 10.1038/npp.2014.152CrossRefGoogle ScholarPubMed
Freedman, R., Adler, L. E., Gerhardt, G. A., Waldo, M., Baker, N., Rose, G. M., … Franks, R. (1987). Neurobiological studies of sensory gating in schizophrenia. Schizophrenia Bulletin, 13(4), 669678. doi: 10.1093/schbul/13.4.669CrossRefGoogle ScholarPubMed
Fuerst, D. R., Gallinat, J., & Boutros, N. N. (2007). Range of sensory gating values and test-retest reliability in normal subjects. Psychophysiology, 44(4), 620626. doi: 10.1111/j.1469-8986.2007.00524.xCrossRefGoogle ScholarPubMed
Gardner, D. M., Murphy, A. L., O'Donnell, H., Centorrino, F., & Baldessarini, R. J. (2010). International consensus study of antipsychotic dosing. American Journal of Psychiatry, 167(6), 686693. doi: 10.1176/appi.ajp.2009.09060802CrossRefGoogle ScholarPubMed
Gonzalez-Ortega, I., Gonzalez-Pinto, A., Alberich, S., Echeburua, E., Bernardo, M., Cabrera, B., … Selva, G. (2020). Influence of social cognition as a mediator between cognitive reserve and psychosocial functioning in patients with first-episode psychosis. Psychological Medicine, 50(16), 27022710. doi: 10.1017/S0033291719002794CrossRefGoogle ScholarPubMed
Green, M. F. (2016). Impact of cognitive and social-cognitive impairment on functional outcomes in patients with schizophrenia. Journal of Clinical Psychiatry, 77(Suppl 2), 811. doi: 10.4088/JCP.14074su1c.02CrossRefGoogle ScholarPubMed
Greenwood, T. A., Light, G. A., Swerdlow, N. R., Calkins, M. E., Green, M. F., Gur, R. E., … Braff, D. L. (2016). Gating deficit heritability and correlation with increased clinical severity in schizophrenia patients with positive family history. American Journal of Psychiatry, 173(4), 385391. doi: 10.1176/appi.ajp.2015.15050605CrossRefGoogle ScholarPubMed
Haenschel, C., Baldeweg, T., Croft, R. J., Whittington, M., & Gruzelier, J. (2000). Gamma and beta frequency oscillations in response to novel auditory stimuli: A comparison of human electroencephalogram (EEG) data with in vitro models. Proceedings of the National Academy of Sciences of the United States of America, 97(13), 76457650. doi: 10.1073/pnas.120162397CrossRefGoogle ScholarPubMed
Hall, M. H., Chen, C. Y., Cohen, B. M., Spencer, K. M., Levy, D. L., Ongur, D., & Smoller, J. W. (2015). Genomewide association analyses of electrophysiological endophenotypes for schizophrenia and psychotic bipolar disorders: A preliminary report. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 168B(3), 151161. doi: 10.1002/ajmg.b.32298CrossRefGoogle ScholarPubMed
Hall, M. H., Levy, D. L., Salisbury, D. F., Haddad, S., Gallagher, P., Lohan, M., … Smoller, J. W. (2014). Neurophysiologic effect of GWAS derived schizophrenia and bipolar risk variants. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 165B(1), 918. doi: 10.1002/ajmg.b.32212CrossRefGoogle ScholarPubMed
Hall, M. H., Rijsdijk, F., Picchioni, M., Schulze, K., Ettinger, U., Toulopoulou, T., … Sham, P. (2007). Substantial shared genetic influences on schizophrenia and event-related potentials. American Journal of Psychiatry, 164(5), 804812. doi: 10.1176/ajp.2007.164.5.804CrossRefGoogle ScholarPubMed
Hall, M. H., Schulze, K., Rijsdijk, F., Picchioni, M., Ettinger, U., Bramon, E., … Sham, P. (2006). Heritability and reliability of P300, P50 and duration mismatch negativity. Behavior Genetics, 36(6), 845857. doi: 10.1007/s10519-006-9091-6CrossRefGoogle ScholarPubMed
Hall, M. H., Taylor, G., Salisbury, D. F., & Levy, D. L. (2011). Sensory gating event-related potentials and oscillations in schizophrenia patients and their unaffected relatives. Schizophrenia Bulletin, 37(6), 11871199. doi: 10.1093/schbul/sbq027CrossRefGoogle ScholarPubMed
Hamilton, H. K., Williams, T. J., Ventura, J., Jasperse, L. J., Owens, E. M., Miller, G. A., … Yee, C. M. (2018). Clinical and cognitive significance of auditory sensory processing deficits in schizophrenia. American Journal of Psychiatry, 175(3), 275283. doi: 10.1176/appi.ajp.2017.16111203CrossRefGoogle ScholarPubMed
Hong, X., Chan, R. C., Zhuang, X., Jiang, T., Wan, X., Wang, J., … Weng, B. (2009). Neuroleptic effects on P50 sensory gating in patients with first-episode never-medicated schizophrenia. Schizophrenia Research, 108(1–3), 151157. doi: 10.1016/j.schres.2008.11.016CrossRefGoogle ScholarPubMed
Javed, A., & Charles, A. (2018). The importance of social cognition in improving functional outcomes in schizophrenia. Frontiers in Psychiatry, 9, 157. doi: 10.3389/fpsyt.2018.00157CrossRefGoogle ScholarPubMed
Kahn, R. S., & Keefe, R. S. (2013). Schizophrenia is a cognitive illness: Time for a change in focus. JAMA Psychiatry, 70(10), 11071112. doi: 10.1001/jamapsychiatry.2013.155CrossRefGoogle ScholarPubMed
Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13(2), 261276. doi: 10.1093/schbul/13.2.261CrossRefGoogle ScholarPubMed
Keefe, R. S. (2014). The longitudinal course of cognitive impairment in schizophrenia: An examination of data from premorbid through posttreatment phases of illness. Journal of Clinical Psychiatry, 75(Suppl 2), 813. doi: 10.4088/JCP.13065su1.02CrossRefGoogle Scholar
Kenney, J., Anderson-Schmidt, H., Scanlon, C., Arndt, S., Scherz, E., McInerney, S., … Cannon, D. M. (2015). Cognitive course in first-episode psychosis and clinical correlates: A 4 year longitudinal study using the MATRICS consensus cognitive battery. Schizophrenia Research, 169(1–3), 101108. doi: 10.1016/j.schres.2015.09.007CrossRefGoogle ScholarPubMed
Kurtz, M. M., Mueser, K. T., Thime, W. R., Corbera, S., & Wexler, B. E. (2015). Social skills training and computer-assisted cognitive remediation in schizophrenia. Schizophrenia Research, 162(1–3), 3541. doi: 10.1016/j.schres.2015.01.020CrossRefGoogle ScholarPubMed
Lemvigh, C. K., Jepsen, J. R. M., Fagerlund, B., Pagsberg, A. K., Glenthoj, B. Y., Rydkjaer, J., & Oranje, B. (2020). Auditory sensory gating in young adolescents with early-onset psychosis: A comparison with attention-deficit/hyperactivity disorder. Neuropsychopharmacology, 45(4), 649655. doi: 10.1038/s41386-019-0555-9CrossRefGoogle ScholarPubMed
Lewandowski, K. E., Cohen, B. M., Keshavan, M. S., Sperry, S. H., & Ongur, D. (2013). Neuropsychological functioning predicts community outcomes in affective and non-affective psychoses: A 6-month follow-up. Schizophrenia Research, 148(1–3), 3437. doi: 10.1016/j.schres.2013.05.012CrossRefGoogle ScholarPubMed
Lieberman, J. A., Small, S. A., & Girgis, R. R. (2019). Early detection and preventive intervention in schizophrenia: From fantasy to reality. American Journal of Psychiatry, 176(10), 794810. doi: 10.1176/appi.ajp.2019.19080865CrossRefGoogle ScholarPubMed
Light, G. A., Geyer, M. A., Clementz, B. A., Cadenhead, K. S., & Braff, D. L. (2000). Normal P50 suppression in schizophrenia patients treated with atypical antipsychotic medications. American Journal of Psychiatry, 157(5), 767771. doi: 10.1176/appi.ajp.157.5.767CrossRefGoogle ScholarPubMed
Martin, E. A., Ongur, D., Cohen, B. M., & Lewandowski, K. E. (2015). Social functioning and age across affective and nonaffective psychoses. Journal of Nervous and Mental Disease, 203(1), 3742. doi: 10.1097/NMD.0000000000000232CrossRefGoogle ScholarPubMed
Mayer, A. R., Hanlon, F. M., Franco, A. R., Teshiba, T. M., Thoma, R. J., Clark, V. P., & Canive, J. M. (2009). The neural networks underlying auditory sensory gating. Neuroimage, 44(1), 182189. doi: 10.1016/j.neuroimage.2008.08.025CrossRefGoogle ScholarPubMed
McCleery, A., Ventura, J., Kern, R. S., Subotnik, K. L., Gretchen-Doorly, D., Green, M. F., … Nuechterlein, K. H. (2014). Cognitive functioning in first-episode schizophrenia: MATRICS Consensus Cognitive Battery (MCCB) profile of impairment. Schizophrenia Research, 157(1–3), 3339. doi: 10.1016/j.schres.2014.04.039CrossRefGoogle ScholarPubMed
McDonald, S., Flanagan, S., Rollins, J., & Kinch, J. (2003). TASIT: A new clinical tool for assessing social perception after traumatic brain injury. Journal of Head Trauma Rehabilitation, 18(3), 219238. doi: 10.1097/00001199-200305000-00001CrossRefGoogle ScholarPubMed
Micoulaud-Franchi, J. A., Aramaki, M., Geoffroy, P. A., Richieri, R., Cermolacce, M., Faget, C., … Vion-Dury, J. (2015). Effects of clozapine on perceptual abnormalities and sensory gating: A preliminary cross-sectional study in schizophrenia. Journal of Clinical Psychopharmacology, 35(2), 184187. doi: 10.1097/JCP.0000000000000270CrossRefGoogle ScholarPubMed
Monaghan, C. K., Brickman, S., Huynh, P., Ongur, D., & Hall, M. H. (2019). A longitudinal study of event-related potentials and correlations with psychosocial functioning and clinical features in first-episode psychosis patients. International Journal of Psychophysiology, 145, 4856. doi: 10.1016/j.ijpsycho.2019.05.007CrossRefGoogle ScholarPubMed
Montgomery, S. A., & Asberg, M. (1979). A new depression scale designed to be sensitive to change. British Journal of Psychiatry, 134, 382389. doi: 10.1192/bjp.134.4.382CrossRefGoogle ScholarPubMed
Nagamoto, H. T., Adler, L. E., Hea, R. A., Griffith, J. M., McRae, K. A., & Freedman, R. (1996). Gating of auditory P50 in schizophrenics: Unique effects of clozapine. Biological Psychiatry, 40(3), 181188. doi: 10.1016/0006-3223(95)00371-1CrossRefGoogle ScholarPubMed
Nuechterlein, K. H., Green, M. F., Kern, R. S., Baade, L. E., Barch, D. M., Cohen, J. D., … Marder, S. R. (2008). The MATRICS consensus cognitive battery, part 1: Test selection, reliability, and validity. American Journal of Psychiatry, 165(2), 203213. doi: 10.1176/appi.ajp.2007.07010042CrossRefGoogle ScholarPubMed
Ohmuro, N., Katsura, M., Obara, C., Kikuchi, T., Sakuma, A., Iizuka, K., … Matsumoto, K. (2016). Deficits of cognitive theory of mind and its relationship with functioning in individuals with an at-risk mental state and first-episode psychosis. Psychiatry Research, 243, 318325. doi: 10.1016/j.psychres.2016.06.051CrossRefGoogle ScholarPubMed
Olincy, A., Braff, D. L., Adler, L. E., Cadenhead, K. S., Calkins, M. E., Dobie, D. J., … Freedman, R. (2010). Inhibition of the P50 cerebral evoked response to repeated auditory stimuli: Results from the consortium on genetics of schizophrenia. Schizophrenia Research, 119(1–3), 175182. doi: 10.1016/j.schres.2010.03.004CrossRefGoogle Scholar
Oranje, B., Aggernaes, B., Rasmussen, H., Ebdrup, B. H., & Glenthoj, B. Y. (2013). P50 suppression and its neural generators in antipsychotic-naive first-episode schizophrenia before and after 6 months of quetiapine treatment. Schizophrenia Bulletin, 39(2), 472480. doi: 10.1093/schbul/sbr183CrossRefGoogle ScholarPubMed
Phillips, L. K., & Seidman, L. J. (2008). Emotion processing in persons at risk for schizophrenia. Schizophrenia Bulletin, 34(5), 888903. doi: 10.1093/schbul/sbn085CrossRefGoogle ScholarPubMed
Pinkham, A. E., Penn, D. L., Green, M. F., Buck, B., Healey, K., & Harvey, P. D. (2014). The social cognition psychometric evaluation study: Results of the expert survey and RAND panel. Schizophrenia Bulletin, 40(4), 813823. doi: 10.1093/schbul/sbt081CrossRefGoogle ScholarPubMed
Postmes, L., Sno, H. N., Goedhart, S., van der Stel, J., Heering, H. D., & de Haan, L. (2014). Schizophrenia as a self-disorder due to perceptual incoherence. Schizophrenia Research, 152(1), 4150. doi: 10.1016/j.schres.2013.07.027CrossRefGoogle ScholarPubMed
Potter, D., Summerfelt, A., Gold, J., & Buchanan, R. W. (2006). Review of clinical correlates of P50 sensory gating abnormalities in patients with schizophrenia. Schizophrenia Bulletin, 32(4), 692700. doi: 10.1093/schbul/sbj050CrossRefGoogle ScholarPubMed
Sanchez-Morla, E. M., Santos, J. L., Aparicio, A., Garcia-Jimenez, M. A., Soria, C., & Arango, C. (2013). Neuropsychological correlates of P50 sensory gating in patients with schizophrenia. Schizophrenia Research, 143(1), 102106. doi: 10.1016/j.schres.2012.10.017CrossRefGoogle ScholarPubMed
Sanchez-Torres, A. M., Moreno-Izco, L., Lorente-Omenaca, R., Cabrera, B., Lobo, A., Gonzalez-Pinto, A. M., … Group, P. E. (2018). Individual trajectories of cognitive performance in first-episode psychosis: A 2-year follow-up study. European Archives of Psychiatry and Clinical Neuroscience, 268(7), 699711. doi: 10.1007/s00406-017-0857-zCrossRefGoogle ScholarPubMed
Santesteban-Echarri, O., Paino, M., Rice, S., Gonzalez-Blanch, C., McGorry, P., Gleeson, J., & Alvarez-Jimenez, M. (2017). Predictors of functional recovery in first-episode psychosis: A systematic review and meta-analysis of longitudinal studies. Clinical Psychology Review, 58, 5975. doi: 10.1016/j.cpr.2017.09.007CrossRefGoogle ScholarPubMed
Santos, J. L., Sanchez-Morla, E. M., Aparicio, A., Garcia-Jimenez, M. A., Villanueva, C., Martinez-Vizcaino, V., & Arango, C. (2010). P50 gating in deficit and nondeficit schizophrenia. Schizophrenia Research, 119(1–3), 183190. doi: 10.1016/j.schres.2010.01.010CrossRefGoogle ScholarPubMed
Sheffield, J. M., Karcher, N. R., & Barch, D. M. (2018). Cognitive deficits in psychotic disorders: A lifespan perspective. Neuropsychology Review, 28(4), 509533. doi: 10.1007/s11065-018-9388-2CrossRefGoogle ScholarPubMed
Smith, A. K., Edgar, J. C., Huang, M., Lu, B. Y., Thoma, R. J., Hanlon, F. M., … Canive, J. M. (2010). Cognitive abilities and 50- and 100-msec paired-click processes in schizophrenia. American Journal of Psychiatry, 167(10), 12641275. doi: 10.1176/appi.ajp.2010.09071059CrossRefGoogle ScholarPubMed
Smith, D. A., Boutros, N. N., & Schwarzkopf, S. B. (1994). Reliability of P50 auditory event-related potential indices of sensory gating. Psychophysiology, 31(5), 495502. doi: 10.1111/j.1469-8986.1994.tb01053.xCrossRefGoogle ScholarPubMed
Thoma, R. J., Hanlon, F. M., Moses, S. N., Edgar, J. C., Huang, M., Weisend, M. P., … Canive, J. M. (2003). Lateralization of auditory sensory gating and neuropsychological dysfunction in schizophrenia. American Journal of Psychiatry, 160(9), 15951605. doi: 10.1176/appi.ajp.160.9.1595CrossRefGoogle ScholarPubMed
Ventura, J., Hellemann, G. S., Thames, A. D., Koellner, V., & Nuechterlein, K. H. (2009). Symptoms as mediators of the relationship between neurocognition and functional outcome in schizophrenia: A meta-analysis. Schizophrenia Research, 113(2–3), 189199. doi: 10.1016/j.schres.2009.03.035CrossRefGoogle ScholarPubMed
Welch, M., & Welch, T. (2007). Early psychosis in rural areas. Australian and New Zealand Journal of Psychiatry, 41(6), 485494. doi: 10.1080/00048670701332284CrossRefGoogle ScholarPubMed
Williams, T. J., Nuechterlein, K. H., Subotnik, K. L., & Yee, C. M. (2011). Distinct neural generators of sensory gating in schizophrenia. Psychophysiology, 48(4), 470478. doi: 10.1111/j.1469-8986.2010.01119.xCrossRefGoogle ScholarPubMed
Xia, L., Wang, D., Wei, G., Wang, J., Zhou, H., Xu, H., … Zhang, X. (2021). P50 inhibition defects with psychopathology and cognitive impairment in patients with first-episode drug-naive schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 107, 110246. doi: 10.1016/j.pnpbp.2021.110246CrossRefGoogle ScholarPubMed
Young, R. C., Biggs, J. T., Ziegler, V. E., & Meyer, D. A. (1978). A rating scale for mania: Reliability, validity and sensitivity. British Journal of Psychiatry, 133, 429435. doi: 10.1192/bjp.133.5.429CrossRefGoogle ScholarPubMed
Zhou, T. H., Mueller, N. E., Spencer, K. M., Mallya, S. G., Lewandowski, K. E., Norris, L. A., … Hall, M. H. (2018). Auditory steady-state response deficits are associated with symptom severity and poor functioning in patients with psychotic disorder. Schizophrenia Research, 201, 278286. doi: 10.1016/j.schres.2018.05.027CrossRefGoogle ScholarPubMed
Supplementary material: File

Li et al. supplementary material

Tables S1-S7 and Figure S1

Download Li et al. supplementary material(File)
File 558.8 KB