Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-30T13:49:40.327Z Has data issue: false hasContentIssue false

Classification of compact radio sources in the Galactic plane with supervised machine learning

Published online by Cambridge University Press:  01 April 2024

S. Riggi*
Affiliation:
INAF – Osservatorio Astrofisico di Catania, Catania, Italy
G. Umana
Affiliation:
INAF – Osservatorio Astrofisico di Catania, Catania, Italy
C. Trigilio
Affiliation:
INAF – Osservatorio Astrofisico di Catania, Catania, Italy
C. Bordiu
Affiliation:
INAF – Osservatorio Astrofisico di Catania, Catania, Italy
F. Bufano
Affiliation:
INAF – Osservatorio Astrofisico di Catania, Catania, Italy
A. Ingallinera
Affiliation:
INAF – Osservatorio Astrofisico di Catania, Catania, Italy
F. Cavallaro
Affiliation:
INAF – Osservatorio Astrofisico di Catania, Catania, Italy
Y. Gordon
Affiliation:
Department of Physics, University of Wisconsin-Madison, Madison, WI, USA
R.P. Norris
Affiliation:
Western Sydney University, Penrith South DC, NSW, Australia CSIRO Space & Astronomy, Epping, NSW, Australia
G. Gürkan
Affiliation:
Thüringer Landessternwarte Tautenburg (TLS), Tautenburg, Germany CSIRO Space & Astronomy, ATNF, Bentley, WA, Australia
P. Leto
Affiliation:
INAF – Osservatorio Astrofisico di Catania, Catania, Italy
C. Buemi
Affiliation:
INAF – Osservatorio Astrofisico di Catania, Catania, Italy
S. Loru
Affiliation:
INAF – Osservatorio Astrofisico di Catania, Catania, Italy
A.M. Hopkins
Affiliation:
Australian Astronomical Optics, Macquarie University, North Ryde, NSW, Australia
M.D. Filipović
Affiliation:
Western Sydney University, Penrith South DC, NSW, Australia
T. Cecconello
Affiliation:
INAF – Osservatorio Astrofisico di Catania, Catania, Italy Department of Electrical, Electronic and Computer Engineering, University of Catania, Catania, Italy
*
Corresponding author: S. Riggi; Email: simone.riggi@inaf.it

Abstract

Generation of science-ready data from processed data products is one of the major challenges in next-generation radio continuum surveys with the Square Kilometre Array (SKA) and its precursors, due to the expected data volume and the need to achieve a high degree of automated processing. Source extraction, characterization, and classification are the major stages involved in this process. In this work we focus on the classification of compact radio sources in the Galactic plane using both radio and infrared images as inputs. To this aim, we produced a curated dataset of $\sim$20 000 images of compact sources of different astronomical classes, obtained from past radio and infrared surveys, and novel radio data from pilot surveys carried out with the Australian SKA Pathfinder. Radio spectral index information was also obtained for a subset of the data. We then trained two different classifiers on the produced dataset. The first model uses gradient-boosted decision trees and is trained on a set of pre-computed features derived from the data, which include radio-infrared colour indices and the radio spectral index. The second model is trained directly on multi-channel images, employing convolutional neural networks. Using a completely supervised procedure, we obtained a high classification accuracy (F1-score > 90%) for separating Galactic objects from the extragalactic background. Individual class discrimination performances, ranging from 60% to 75%, increased by 10% when adding far-infrared and spectral index information, with extragalactic objects, PNe and Hii regions identified with higher accuracies. The implemented tools and trained models were publicly released and made available to the radioastronomical community for future application on new radio data.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abadi, M., et al. 2016, Proceedings of the 12th USENIX Symposium on Operating Systems Designand Implementation (OSDI’16), November 2–4, 2016, Savannah, GA, USA, ISBN 978-1-931971-33-1Google Scholar
Akras, S., et al. 2019, MNRAS, 488, 3238CrossRefGoogle Scholar
Alegre, L., et al. 2022, MNRAS, 516, 4716CrossRefGoogle Scholar
Ainsworth, R. E., et al. (AMI Consortium) 2012, MNRAS, 423, 1089CrossRefGoogle Scholar
Anderson, L. D., et al. 2012, A&A, 537, A1CrossRefGoogle Scholar
Anderson, L. D., et al. 2014, APJSS, 212, 1CrossRefGoogle Scholar
Anglada, G., et al. 1998, AJ, 116, 2953CrossRefGoogle Scholar
Aniyan, A. K., & Thorat, K. 2017, ApJS, 230, 20CrossRefGoogle Scholar
Awang Iskandar, D. N. F., et al. 2020, Galaxies, 8, 88CrossRefGoogle Scholar
Banfield, J. K., et al. 2015, MNRAS, 453, 2326Google Scholar
Bates, S. D., et al. 2012, MNRAS, 427, 1052CrossRefGoogle Scholar
Becker, R. H., et al. 1995, ApJ, 450, 559CrossRefGoogle Scholar
Benaglia, P. 2010, ASPC, 422, 111Google Scholar
Beskin, V. S., et al. 2015, SSR, 191, 207CrossRefGoogle Scholar
Beskin, V. S., & Physics–Uspekhi 2018, 188, 377, https://doi.org/10.3367/UFNr.2017.10.038216 CrossRefGoogle Scholar
Best, P. N., et al. 2005, MNRAS, 362, 9Google Scholar
Bolton, A. S., et al. 2012, AJ, 144, 144Google Scholar
Bradski, G. 2000, DJST, 120, 122Google Scholar
Brunthaler, A., et al. 2021, A&A, 651, A85CrossRefGoogle Scholar
Ching, J. H. Y., et al. 2017, MNRAS, 464, 1306CrossRefGoogle Scholar
Chollet, F., et al. 2015, https://keras.io Google Scholar
Churchwell, E., et al. 2009, PASP, 121, 213CrossRefGoogle Scholar
Condon, J. J., et al. 1998, AJ, 115, 1693CrossRefGoogle Scholar
Condon, J. J., et al. 2002, AJ, 124, 675CrossRefGoogle Scholar
Cortes, C., & Vapnik, V. 1995, ML, 20(3), 273CrossRefGoogle Scholar
Cutri, R. M., et al. 2013, Explanatory Supplement to the AllWISE Data Release Products, Tech. rep.Google Scholar
Dalcin, L., et al. 2005, JPDC, 65, 1108Google Scholar
de Gasperin, F., et al. 2018, MNRAS, 474, 5008CrossRefGoogle Scholar
Dewdney, P., et al. 2016, SKA1 SYSTEM BASELINE DESIGN V2, SKA-TEL-SKO-0000002Google Scholar
Drew, J. E., et al. 2005, MNRAS, 362, 753CrossRefGoogle Scholar
Drew, J. E., et al. 2014, MNRAS, 440, 2036Google Scholar
Fanaroff, B. L., & Riley, J. M. 1974, MNRAS, 167, 31CrossRefGoogle Scholar
Fazio, G. G., et al. 2004, ApJS, 154, 10CrossRefGoogle Scholar
Flewelling, H. A., et al. 2020, ApJS, 251, 7CrossRefGoogle Scholar
Frew, D., & Parker, Q. 2010, PASA, 27, 129CrossRefGoogle Scholar
Galvin, T. J., et al. 2020, MNRAS, 497, 2730CrossRefGoogle Scholar
Gómez de Castro, A. I. 2013, pss4.book, 279. doi: 10.1007/978-94-007-5615-1_6 CrossRefGoogle Scholar
Gordon, Y. A., et al. 2021, ApJS, 255, 30CrossRefGoogle Scholar
Güdel, M., 2002, ARA&A, 40, 217CrossRefGoogle Scholar
Gupta, N., et al. 2022, PASA, 39, E051Google Scholar
Hajduk, M., et al. 2018, MNRAS, 479, 5657CrossRefGoogle Scholar
Hale, C., et al. 2021, PASA, 38, E058Google Scholar
Hambly, N. C., et al. 2001, MNRAS, 326, 1279CrossRefGoogle Scholar
Helfand, D. J., et al. 1999, AJ, 117, 1568CrossRefGoogle Scholar
Helfand, D. J., et al. 2006, AJ, 131, 2525CrossRefGoogle Scholar
Helfand, D. J., White, R. L., & Becker, R. H. 2015, ApJ, 801, 26CrossRefGoogle Scholar
Hoare, M. G., et al. 2012, PASP, 124, 939Google Scholar
Hotan, A., et al. 2021, PASA, 38, E009Google Scholar
Ingallinera, A., et al. 2022, MNRAS, 512, L21CrossRefGoogle Scholar
Jacob, J. C., et al. 2010, Astrophysics Source Code Library, record ascl:1010.036Google Scholar
Johnston, S., et al. 2008, ExA, 22, 151CrossRefGoogle Scholar
Ke, G., et al. 2017, Advances in Neural Information Processing Systems, 30, 3146Google Scholar
Kimball, A. E., & Ivezić, Ž. 2008, AJ, 136, 684CrossRefGoogle Scholar
Kimball, A. E., et al. 2009, ApJ, 701, 535CrossRefGoogle Scholar
Kurtz, S., 2005, in IAU Symposium, Vol. 227, Massive Star Birth: A Crossroads of Astrophysics, ed. Cesaroni, R., Felli, M., Churchwell, E., & Walmsley, M. (Shaftesbury Road, Cambridge, UK: Cambridge University Press, University Printing House), 111Google Scholar
Kwok, S. 2000, The Origin and Evolution of Planetary Nebulae (Cambridge University Press)CrossRefGoogle Scholar
Leto, P., et al. 2020, MNRAS, 493, 4657CrossRefGoogle Scholar
Leto, P., et al. 2021, MNRAS, 507, 1979Google Scholar
Liu, Q. Z., van Paradijs, J., & van den Heuvel, E. P.J. 2006, A&A, 455, 1165CrossRefGoogle Scholar
Liu, Q. Z., van Paradijs, J., & van den Heuvel, E. P.J. 2007, A&A, 469, 807CrossRefGoogle Scholar
Liu, W., et al. 2019, RAA, 19, 042Google Scholar
Lukic, V., et al. 2018, MNRAS, 476, 246CrossRefGoogle Scholar
Lukic, V., et al. 2019, MNRAS, 487, 1729CrossRefGoogle Scholar
Lyon, R. J., et al. 2016, MNRAS, 459, 1104CrossRefGoogle Scholar
Makai, Z., et al. 2017, ApJ, 846, 64CrossRefGoogle Scholar
Manchester, R. N., Hobbs, G. B., Teoh, A., & Hobbs, M. 2005, AJ, 129, 1993CrossRefGoogle Scholar
Mancuso, C., et al. 2017, ApJ, 842, 95CrossRefGoogle Scholar
Maron, O., et al. 2000, A&AS, 147, 195CrossRefGoogle Scholar
Maslej-Krešňáková, V., et al. 2021, MNRAS, 505, 1464CrossRefGoogle Scholar
Matthews, L. D. 2013, PASP, 125, 313CrossRefGoogle Scholar
Mauch, T., & Sadler, E. M. 2007, MNRAS, 375, 931CrossRefGoogle Scholar
McConnell, D., et al. 2020, PASA, 37, E048CrossRefGoogle Scholar
Medina, S.-N. X., et al. 2019, A&A, 627, A175CrossRefGoogle Scholar
Melrose, D. B., Rafat, M. Z., & Mastrano, A. 2021, MNRAS, 500, 4530CrossRefGoogle Scholar
Molinari, S., et al. 2016, A&A, 591, A149Google Scholar
Morello, G., et al. 2018, MNRAS, 473, 2565CrossRefGoogle Scholar
Murphy, T., et al. 2007, MNRAS, 382, 382Google Scholar
Nikutta, R., et al. 2014, MNRAS, 442, 3361CrossRefGoogle Scholar
Norris, R. P., et al. 2011, PASA, 28, 215CrossRefGoogle Scholar
Norris, R., et al. 2021, PASA, 38, E046Google Scholar
O’Dea, C. P. 1998, PASP, 110, 493CrossRefGoogle Scholar
O’Dea, C. P., & Saikia, D. J. 2021, A&ARv, 29, 3Google Scholar
Panagia, N., & Felli, M. 1975, A&A, 39, 1Google Scholar
Parker, Q. A., et al. 2005, MNRAS, 362, 689Google Scholar
Parker, Q. A. et al. 2016, JPhCS, 728, 032008CrossRefGoogle Scholar
Pedregosa, F., et al. 2011, JMLR, 12, 2825Google Scholar
Pilbratt, G. L., et al. 2010, A&A, 518, L1CrossRefGoogle Scholar
Polsterer, K. L., et al. 2016, in European Symposium on Artificial Neural NetworksGoogle Scholar
Pottasch, S. R. 1984, Planetary Nebulae - A Study of Late Stages of Stellar Evolution, ed. Pottasch, S. R. (Vol. 107; Dordrecht: D. Reidel Publishing Co.) (Astrophysics and Space Science Library), 335 pCrossRefGoogle Scholar
Price-Whelan, A. M., et al. [Astropy Collaboration] 2018, AJ, 156, 123Google Scholar
Price-Whelan, A. M., et al. [Astropy Collaboration] 2022, ApJ, 935, 167Google Scholar
Purcell, C. R., et al. 2013, ApJS, 205, 1Google Scholar
Ralph, N. O., et al. 2019, PASP, 131, 108011CrossRefGoogle Scholar
Randall, K. E., et al. 2012, MNRAS, 421, 1644CrossRefGoogle Scholar
Reynolds, S. P. 1986, ApJ, 304, 713CrossRefGoogle Scholar
Robitaille, T. P., et al. 2012, A&A, 545, A39CrossRefGoogle Scholar
Richardson, N. D., & Mehner, A. 2018, RNAAS, 2, 121CrossRefGoogle Scholar
Riggi, S., et al. 2016, MNRAS, 460, 1486CrossRefGoogle Scholar
Riggi, S., et al. 2019, PASA, 36, E037Google Scholar
Riggi, S., et al. 2021, MNRAS, 502, 60CrossRefGoogle Scholar
Riggi, S., et al. 2021, A&C, 37, 100506CrossRefGoogle Scholar
Riggi, S., et al. 2023, A&C, 42, 100682CrossRefGoogle Scholar
Robitaille, T. P., et al. [Astropy Collaboration] 2013, A&A, 558, A33CrossRefGoogle Scholar
Rosslowe, C. K., & Crowther, P. A. 2015, MNRAS, 447, 2322CrossRefGoogle Scholar
Rustige, L., et al. 2023, RASTI, 2, 264CrossRefGoogle Scholar
Sadeghi, M., et al. 2021, AJ, 161, 94CrossRefGoogle Scholar
Sadler, E. M. 2016, AN, 337, 105CrossRefGoogle Scholar
Scaife, A.M. M. 2012, AR, 7, 26CrossRefGoogle Scholar
Sciacca, E., et al. 2021, arXiv:2101.07639Google Scholar
Shultz, M. E., et al. 2022, MNRAS, 513, 1429CrossRefGoogle Scholar
Slijepcevic, I. V., el al. 2022, MNRAS, 514, 2599CrossRefGoogle Scholar
Skrutskie, M. F., et al. 2006, AJ, 131, 1163CrossRefGoogle Scholar
Tan, C. M. 2018, MNRAS, 474, 4571CrossRefGoogle Scholar
Taylor, A. R., et al. 2003, AJ, 125, 3145Google Scholar
Tingay, S. J., & de Kool, M. 2003, AJ, 126, 723CrossRefGoogle Scholar
Trigilio, C., et al. 2000, A&A, 362, 281Google Scholar
Turtle, A. J., et al. 1962, MNRAS, 124, 297CrossRefGoogle Scholar
Umana, G., et al. 2015a, MNRAS, 454, 902Google Scholar
Umana, G., et al. 2015b, Proc. Sci., Advancing Astrophysics with the Square Kilometre Array (AASKA14), SISSA, Trieste, 118Google Scholar
Umana, G., et al. 2021, MNRAS, 506, 2232Google Scholar
Urry, C. M., & Padovani, P. 1995, PASP, 107, 803CrossRefGoogle Scholar
Van der Walt, S., et al. 2014, PeerJ, 2, e453CrossRefGoogle Scholar
Wachter, S., et al. 2010, AJ, 139, 2330CrossRefGoogle Scholar
Wang, Y., et al. 2018, A&A, 619, A124Google Scholar
Wang, Z., et al. 2004, IEEE TIP, 13, 600CrossRefGoogle Scholar
Wendker, H. J. 1995, A&AS, 109, 177; March 2001 update of the catalogue, CDS VIII/99Google Scholar
Wenger, M., et al. 2000, A&AS, 143, 9Google Scholar
Werner, M. W., et al. 2004, ApJS, 154, 1Google Scholar
Wright, E. L., et al. 2010, AJ, 140, 1868Google Scholar
Wu, C., et al. 2019, MNRAS, 482, 1211Google Scholar
Yang, Y., et al. 2019, MNRAS, 482, 2681Google Scholar
Yang, Y., et al. 2021, A&A, 645, A110CrossRefGoogle Scholar
York, D. G., et al. 2000, AJ, 120, 1579Google Scholar