Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-14T04:44:20.572Z Has data issue: false hasContentIssue false

Estimating stellar parameters and identifying very metal-poor stars for low-resolution spectra (R ∼ 200)

Published online by Cambridge University Press:  28 November 2023

Tianmin Wu
Affiliation:
CAS Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China School of Mathematics and Statistics, Shandong University, Weihai, Shandong 264209, People’s Republic of China
Yude Bu*
Affiliation:
School of Mathematics and Statistics, Shandong University, Weihai, Shandong 264209, People’s Republic of China
Jianhang Xie
Affiliation:
School of Mathematics and Statistics, Shandong University, Weihai, Shandong 264209, People’s Republic of China
Junchao Liang
Affiliation:
School of Mathematics and Statistics, Shandong University, Weihai, Shandong 264209, People’s Republic of China
Wei Liu
Affiliation:
School of Mathematics and Statistics, Shandong University, Weihai, Shandong 264209, People’s Republic of China
Zhenping Yi
Affiliation:
School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, Shandong 264209, People’s Republic of China
Xiaoming Kong
Affiliation:
School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, Shandong 264209, People’s Republic of China
Meng Liu
Affiliation:
School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, Shandong 264209, People’s Republic of China
*
Corresponding author: Yude Bu; Email: buyude@sdu.edu.cn

Abstract

Very metal-poor (VMP, [Fe/H]<-2.0) stars serve as invaluable repositories of insights into the nature and evolution of the first-generation stars formed in the early galaxy. The upcoming China Space Station Telescope (CSST) will provide us with a large amount of spectral data that may contain plenty of VMP stars, and thus it is crucial to determine the stellar atmospheric parameters ($T_{\textrm{eff}}$, $\log$ g, and [Fe/H]) for low-resolution spectra similar to the CSST spectra ($R\sim 200$). This study introduces a novel two-dimensional Convolutional Neural Network (CNN) model, comprised of three convolutional layers and two fully connected layers. The model’s proficiency is assessed in estimating stellar parameters, particularly metallicity, from low-resolution spectra ($R \sim 200$), with a specific focus on enhancing the search for VMP stars within the CSST spectral data. We mainly use 10 008 spectra of VMP stars from LAMOST DR3, and 16 638 spectra of non-VMP stars ([Fe/H]>-2.0) from LAMOST DR8 for the experiments and apply random forest and support vector machine methods to make comparisons. The resolution of all spectra is reduced to $R\sim200$ to match the resolution of the CSST, followed by pre-processing and transformation into two-dimensional spectra for input into the CNN model. The validation and practicality of this model are also tested on the MARCS synthetic spectra. The results show that using the CNN model constructed in this paper, we obtain Mean Absolute Error (MAE) values of 99.40 K for $T_{\textrm{eff}}$, 0.22 dex for $\log$ g, 0.14 dex for [Fe/H], and 0.26 dex for [C/Fe] on the test set. Besides, the CNN model can efficiently identify VMP stars with a precision rate of 94.77%, a recall rate of 93.73%, and an accuracy of 95.70%. This paper powerfully demonstrates the effectiveness of the proposed CNN model in estimating stellar parameters for low-resolution spectra ($R\sim200$) and recognizing VMP stars that are of interest for stellar population and galactic evolution work.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of the Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aoki, W., Beers, T. C., Christlieb, N., Norris, J. E., Ryan, S. G., & Tsangarides, S. 2007, ApJ, 655, 492. https://doi.org/10.1086/509817. arXiv: astro-ph/0609702 [astro-ph].CrossRefGoogle Scholar
Arentsen, A., et al. 2020, MNRAS, 496, 4964. https://doi.org/10.1093/mnras/staa1661. arXiv: 2006.08641 [astro-ph.GA]CrossRefGoogle Scholar
Barklem, P. S., et al. 2005, A&A, 439, 129CrossRefGoogle Scholar
Beers, T. 2011, HST Proposal ID 12554. Cycle 19Google Scholar
Beers, T. C., & Christlieb, N. 2005, ARA&A, 43, 531. https://doi.org/10.1146/annurev.astro.42.053102.134057CrossRefGoogle Scholar
Blanco-Cuaresma, S., Soubiran, C., Heiter, U., & Jofrè, P. 2014, A&A, 569, A111. https://doi.org/10.1051/0004-6361/201423945. arXiv: 1407.2608 [astro-ph.IM]CrossRefGoogle Scholar
Breiman, L. 2001, ML, 45, 5. https://doi.org/10.1023/A:1010933404324CrossRefGoogle Scholar
Christlieb, N., Schörck, T., Frebel, A., Beers, T. C., Wisotzki, L., & Reimers, D. 2008, A&A, 484, 721. https://doi.org/10.1051/0004-6361:20078748. arXiv: 0804.1520 [astro-ph]CrossRefGoogle Scholar
Cortes, C., & Vapnik, V. 1995, ML, 20, 273CrossRefGoogle Scholar
Da Costa, G. S., et al. 2019, MNRAS, 489, 5900. https://doi.org/10.1093/mnras/stz2550. arXiv: 1909.06227 [astro-ph.SR]CrossRefGoogle Scholar
Du, B., et al. 2021, RAA, 21, 202. https://doi.org/10.1088/1674-4527/21/8/202CrossRefGoogle Scholar
Fabbro, S., Venn, K. A., OŠBriain, T., Bialek, S., Kielty, C. L., Jahandar, F., & Monty, S. 2018, MNRAS, 475, 2978. https://doi.org/10.1093/mnras/stx3298. arXiv: 1709.09182 [astro-ph.IM]CrossRefGoogle Scholar
Frebel, A. 2018, ARNPS, 68, 237. https://doi.org/10.1146/annurev-nucl-101917-021141. arXiv: 1806.08955 [astro-ph.SR]CrossRefGoogle Scholar
Frebel, A., et al. 2006, ApJ, 652, 1585. https://doi.org/10.1086/508506. arXiv: astro-ph/0608332 [astro-ph]CrossRefGoogle Scholar
Frebel, A., & Norris, J. E. 2015, ARA&A, 53, 631. https://doi.org/10.1146/annurev-astro-082214-122423. arXiv: 1501.06921 [astro-ph.SR]CrossRefGoogle Scholar
García Pérez, A. E., et al. 2013, ApJL, 767, L9. https://doi.org/10.1088/2041-8205/767/1/L9. arXiv: 1301.1367 [astro-ph.SR]CrossRefGoogle Scholar
Gavel, A., Andrae, R., Fouesneau, M., Korn, A. J., & Sordo, R. 2022, Estimating $left[alpha/ext{Fe} ight]$ from gaia low-resolution bp/rp spectra using the extratrees algorithmCrossRefGoogle Scholar
Gustafsson, B., Edvardsson, B., Eriksson, K., Jørgensen, U. G., Nordlund, Å, & Plez, B. 2008, A&A, 486, 951. https://doi.org/10.1051/0004-6361:200809724. arXiv: 0805.0554 [astro-ph]CrossRefGoogle Scholar
Hinton, G. E. 2008, Reducing the dimensionality of data with neuralGoogle Scholar
Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. 2012, arXiv e-prints (July): arXiv:1207.0580. https://doi.org/10.48550/arXiv.1207.0580. arXiv: 1207.0580 [cs.NE]CrossRefGoogle Scholar
Ioffe, S., & Szegedy, C. 2015, International Conference on Machine Learning, 448. pmlrGoogle Scholar
Kingma, D. P., & Ba, J. 2014, arXiv preprint arXiv: 1412.6980Google Scholar
Koleva, M., Prugniel, Ph., Bouchard, A., & Wu, Y. 2009, A&A, 501, 1269. https://doi.org/10.1051/0004-6361/200811467. arXiv: 0903.2979 [astro-ph.IM]CrossRefGoogle Scholar
Krizhevsky, A., Sutskever, I., & Hinton, G. E. 2012, Advances in Neural Information Processing Systems 25Google Scholar
Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. 1998, Proc. IEEE, 86, 2278. https://doi.org/10.1109/5.726791CrossRefGoogle Scholar
Lee, Y. S., et al. 2013, AJ, 146, 132. https://doi.org/10.1088/0004-6256/146/5/132. arXiv: 1310.3276 [astro-ph.SR]CrossRefGoogle Scholar
Lee, Y. S., et al. 2008, AJ, 136, 2022. https://doi.org/10.1088/0004-6256/136/5/2022. arXiv: 0710.5645 [astro-ph]CrossRefGoogle Scholar
Leung, H. W., & Bovy, J. 2019, MNRAS, 483, 3255. https://doi.org/10.1093/mnras/sty3217. arXiv: 1808.04428 [astro-ph.GA]CrossRefGoogle Scholar
Li, H., Tan, K., & Zhao, G. 2018, ApJS, 238, 16. https://doi.org/10.3847/1538-4365/aada4a. arXiv: 1809.03881 [hep-ph]CrossRefGoogle Scholar
Li, H. N., Zhao, G., Christlieb, N., Wang, L., Wang, W., Zhang, Y., Hou, Y., & Yuan, H. 2015, ApJ, 798, 110. https://doi.org/10.1088/0004-637X/798/2/110. arXiv: 1501.03062 [astro-ph.SR].CrossRefGoogle Scholar
Li, X., Zeng, S., Wang, Z., Du, B., Kong, X., & Liao, C. 2022, MNRAS, 514, 4588. https://doi.org/10.1093/mnras/stac1625. arXiv: 2207.06042 [astro-ph.IM]CrossRefGoogle Scholar
Lu, Y., Li, X. R., Lin, Y. T., & Qiu, K. B. 2018, AAS, 59, 35Google Scholar
Lucatello, S., Beers, T. C., Christlieb, N., Barklem, P. S., Rossi, S., Marsteller, B., Sivarani, T., & Lee, Y. S. 2006, ApJL, 652, L37. https://doi.org/10.1086/509780. arXiv: astro-ph/0609730 [astro-ph]CrossRefGoogle Scholar
Mahmudunnobe, Md., Hasan, P., Raja, M., & Hasan, S. N. 2021, EPJST, 230, 2177. https://doi.org/10.1140/epjs/s11734-021-00205-x. arXiv: 2103.05826 [astro-ph.SR]CrossRefGoogle Scholar
Marsteller, B., Beers, T. C., Rossi, S., Christlieb, N., Bessell, M., & Rhee, J. 2005, NPhA, 758, 312. https://doi.org/abs/10.1016/j.nuclphysa.2005.05.056. arXiv: astro-ph/0408380 [astro-ph]CrossRefGoogle Scholar
Matijević, G., et al. 2017, A&A, 603, A19Google Scholar
Ness, M., Hogg, D. W., Rix, H.-W., Ho, A. Y. Q., & Zasowski, G. 2015, ApJ, 808, 16. https://doi.org/10.1088/0004-637X/808/1/16. arXiv: 1501.07604 [astro-ph.SR]CrossRefGoogle Scholar
Placco, V. M., Frebel, A., Beers, T. C., & Stancliffe, R. J. 2014, ApJ, 797, 21. https://doi.org/10.1088/0004-637X/797/1/21. arXiv: 1410.2223 [astro-ph.SR]CrossRefGoogle Scholar
Rasmussen, K. C., Zepeda, J., Beers, T. C., Placco, V. M., Depagne, É., Frebel, A., Dietz, S., & Hartwig, T. 2020, ApJ, 905, 20. https://doi.org/10.3847/1538-4357/abc005. arXiv: 2010.04214 [astro-ph.SR]CrossRefGoogle Scholar
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. 2016, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 779.Google Scholar
Reggiani, H., et al. 2019, A&A, 627, A177. https://doi.org/10.1051/0004-6361/201935156. arXiv: 1906.08281 [astro-ph.SR]CrossRefGoogle Scholar
Rhee, J., Beers, T. C., & Irwin, M. J. 2001, in American Astronomical Society Meeting Abstracts, 199:91.08. American Astronomical Society Meeting Abstracts. DecemberGoogle Scholar
Roederer, I. U., Preston, G. W., Thompson, I. B., Shectman, S. A., Sneden, C., Burley, G. S., & Kelson, D. D. 2014, AJ, 147, 136. https://doi.org/10.1088/0004-6256/147/6/136. arXiv: 1403.6853 [astro-ph.SR]CrossRefGoogle Scholar
Ronneberger, O., Fischer, P., & Brox, T. 2015, in Medical Image Computing and Computer-Assisted Intervention–Miccai 2015: 18th International Conference, Munich, Germany, October 5–9, 2015, Proceedings, Part III (Vol. 18; Springer), 234.Google Scholar
Salsi, A., Nardetto, N., Plez, B., & Mourard, D. 2022, A&A, 662, A120. https://doi.org/10.1051/0004-6361/202142133. arXiv: 2203.16320 [astro-ph.SR]CrossRefGoogle Scholar
Szegedy, C., et al. 2015, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1Google Scholar
Ting, Y.-S., Conroy, C., Rix, H.-W., & Cargile, P. 2019, ApJ, 879, 69. https://doi.org/10.3847/1538-4357/ab2331. arXiv: 1804.01530 [astro-ph.SR]CrossRefGoogle Scholar
VandenBerg, D. A., Edvardsson, B., Casagrande, L., & Ferguson, J. W. 2021, MNRAS, 509, 4189. ISSN: 0035-8711. https://doi.org/10.1093/mnras/stab2996. eprint: https://academic.oup.com/mnras/article-pdf/509/3/4189/41505523/stab2996.pdf.Google Scholar
Wang, C., Huang, Y., Yuan, H. B., Zhang, H. W., Xiang, M. S., & Liu, X. W. 2022, ApJS, 259, 51. https://doi.org/10.3847/1538-4365/ac4df7. arXiv: 2201.09442 [astro-ph.SR]CrossRefGoogle Scholar
Wang, J., Zhen-Ping, Y. I., Li-Li, Y., Hui-Fen, D., Jing-Chang, P., Yu-De, B. U., & School Of Mechanical, Electrical Amp, Information Engineering, and Shandong University. 2019, SSAGoogle Scholar
Wang, R., et al. 2020, ApJ, 891, 23. https://doi.org/10.3847/1538-4357/ab6dea. arXiv: 2001.03470 [astro-ph.SR]CrossRefGoogle Scholar
Witten, C. E. C., et al. 2022, MNRAS, 516, 3254. https://doi.org/10.1093/mnras/stac2273. arXiv: 2205.12271 [astro-ph.SR]CrossRefGoogle Scholar
Wu, Y., Du, B., Luo, A., Zhao, Y., & Yuan, H. 2014, in Statistical Challenges in 21st Century Cosmology, ed. Heavens, A., Starck, J.-L., & Krone-Martins, A. (Vol. 306), 340. https://doi.org/10.1017/S1743921314010825. arXiv: 1407.1980 [astro-ph.IM]CrossRefGoogle Scholar
Wu, Y., Luo, A. L., Shi, J. R., Bai, Z. R., & Zhao, Y. H. 2010, New metal-poor star candidates from guo shou-jing telescope (lamost) commissioning observationsGoogle Scholar
Yuan, H.-B., Deng, D.-S., & Sun, Y. 2021, RAA, 21, 074. https://doi.org/10.1088/1674-4527/21/3/074. arXiv: 2010.14005 [astro-ph.IM]CrossRefGoogle Scholar
Yuan, Z., et al. 2020, ApJ, 891, 39. https://doi.org/10.3847/1538-4357/ab6ef7. arXiv: 1910.07538[astro-ph.GA]CrossRefGoogle Scholar
Zhan, H. 2021, CSB, 66, 1290CrossRefGoogle Scholar