Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T00:43:41.560Z Has data issue: false hasContentIssue false

Deglacial and postglacial climate history in east-central Isla Grande De Chiloé, Southern Chile (43°S)

Published online by Cambridge University Press:  20 January 2017

Ana M. Abarzúa
Affiliation:
Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
Carolina Villagrán
Affiliation:
Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
Patricio I. Moreno*
Affiliation:
Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
*
*Corresponding author. Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile. E-mail address:pimoreno@abello.dic.uchile.cl(P.I. Moreno).

Abstract

Palynologic and stratigraphic data from Laguna Tahui (42°50′S, 73°30′W) indicate cool–temperate and humid conditions there between 14,000 and 10,000 14C yr B.P., followed by warmer and drier-than-present conditions between 10,000 and 7000 14C yr B.P., and subsequent cooling and rise in precipitation over the last 5800 14C yr. The thermophilous Valdivian trees Eucryphia cordifolia and Caldcluvia paniculata reached their maximum abundance during the early Holocene warm–dry phase (10,000–7000 14C yr B.P.), followed by a rise in lake levels and reexpansion of North Patagonian conifers starting at 7000 and 5800 14C yr B.P., respectively. Variations in the stratigraphic and geographic distribution of temperate rainforests in southern Chile suggest multimillennial trends in temperature and westerly activity, which are spatially and temporally coherent with paleoclimate records from neighboring regions. Climate variability at millennial and submillennial time scales may account for the establishment and persistence of fine-scale mosaics of Valdivian and North Patagonian rainforest species in low- to mid-elevation communities since ∼5800 14C yr B.P.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, E.M., Garleff, K., Liebricht, H., Regairaz, A.C., Schaebitz, F., Squeo, F.A., Stingl, H., Villagrán, C., (2000). Geomorphology and paleoecology of the arid diagonal in southern South America. Zeitschrift für Angewandte Geologie SH1, 5561.Google Scholar
Ashworth, A.C., Markgraf, V., (1989). Climate of the Chilean Channels between 11,000 and 10,000 yr B.P. based on fossil beetle and pollen analyses. Revista Chilena de Historia Natural 62, 6174.Google Scholar
Ashworth, A.C., Markgraf, V., Villagrán, C., (1991). Late Quaternary climatic history of the Chilean Channels based on fossil pollen and beetle analyses, with an analysis of the modern vegetation and pollen rain. Journal of Quaternary Science 6, 279291.Google Scholar
Bengtsson, L., Enell, M., (1986). Chemical analysis. Berglund, B.E., Handbook of Palaeoecology and Palaeohydrology Wiley, 423451.Google Scholar
Bennett, K.D., Haberle, S.G., Lumley, S.H., (2000). The last glacial–Holocene transition in Southern Chile. Science 290, 325328.CrossRefGoogle ScholarPubMed
Caviedes, C.N., (1972). On the paleoclimatology of the Chilean littoral. The Iowa Geographer Bulletin 29, 814.Google Scholar
Denton, G.H., Lowell, T.V., Moreno, P.I., Andersen, B.G., Schlüchter, C., (1999a). Geomorphology, stratigraphy, and radiocarbon chronology of Llanquihue Drift in the area of the Southern Lake District, Seno Reloncavı́, and Isla Grande de Chiloé, Chile. Geografiska Annaler. Series A. Physical Geography 81, 167229.CrossRefGoogle Scholar
Denton, G.H., Lowell, T.V., Moreno, P.I., Andersen, B.G., Schlüchter, C., (1999b). Interhemispheric linkage of paleoclimate during the last glaciation. Geografiska Annaler. Series A. Physical Geography 81, 107153.Google Scholar
Faegri, K., Iversen, J., (1989). Textbook of Pollen Analysis. Wiley, .Google Scholar
Hajdas, I., Bonani, G., Moreno, P.I., Ariztegui, D., (2003). Precise radiocarbon dating of Late-Glacial cooling in mid-latitude South America. Quaternary Research 59, 7078.CrossRefGoogle Scholar
Heusser, C.J., (1966). Late-Pleistocene pollen diagrams from the Province of Llanquihue, southern Chile. Proceedings of the American Philosophical Society 110, 269305.Google Scholar
Heusser, C.J., (1974). Vegetation and climate of the southern Chilean lake district during and since the last Interglaciation. Quaternary Research 4, 190315.Google Scholar
Heusser, C.J., (1981). Palynology of the last interglacial–glacial cycle in mid-latitudes in central Chile. Quaternary Research 16, 293321.Google Scholar
Heusser, C.J., (1983). Quaternary pollen record from Laguna de Tagua Tagua, Chile. Science 219, 14291432.Google Scholar
Heusser, C.J., (1984). Late-glacial–Holocene climate of the Lake District of Chile. Quaternary Research 22, 7790.Google Scholar
Heusser, C.J., (1989). Southern westerlies during the last glacial maximum. Quaternary Research 31, 423425.Google Scholar
Heusser, C.J., (1990a). Chilotan piedmont glacier in the Southern Andes during the Last Glacial Maximum. Revista Geológica de Chile 17, 318.Google Scholar
Heusser, C.J., (1990b). Ice age vegetation and climate of subtropical Chile. Palaeogeography, Palaeoclimatology, Palaeoecology 80, 107127.Google Scholar
Heusser, C.J., Flint, R.F., (1977). Quaternary glaciations and environments of northern Isla Grande de Chiloé, Chile. Geology 5, 305308.Google Scholar
Heusser, C.J., Lowell, T.V., Heusser, L.E., Hauser, A., Andersen, B.G., Denton, G.H., (1996). Full-glacial–late-glacial palaeoclimate of the Southern Andes: evidence from pollen, beetle, and glacial records. Journal of Quaternary Science 11, 173184.Google Scholar
Heusser, C.J., Heusser, L.E., Lowell, T.V., (1999). Paleoecology of the southern Chilean Lake District-Isla Grande de Chiloé during middle-Late Llanquihue glaciation and deglaciation. Geografiska Annaler. Series A. Physical Geography 81, 231284.Google Scholar
Hoganson, J.W., Ashworth, A.C., (1992). Fossil beetle evidence for climatic change 18,000–10,000 yr B.P. in south-central Chile. Quaternary Research 37, 101116.Google Scholar
Lamy, F., Hebblen, D., Wefer, G., (1999). High-resolution marine record of climate change in mid-latitude Chile during the last 28,000 years based on terrigenous sediment parameters. Quaternary Research 51, 8393.Google Scholar
Lara, A., (1991). The dynamics and disturbance regimes of Fitzroya cupressoides in the south-central Andes of Chile.. Unpublished PhD thesis, University of Colorado, .Google Scholar
Lowell, T.V., Heusser, C.J., Andersen, B.G., Moreno, P.I., Hauser, A., Denton, G.H., Heusser, L.E., Schluchter, C., Marchant, D., (1995). Interhemispheric correlation of Late Pleistocene Glacial events. Science 269, 15411549.Google Scholar
Lumley, S.H., Switsur, R., (1993). Late Quaternary of the Taitao Peninsula, Southern Chile. Journal of Quaternary Science 8, 161165.Google Scholar
Lusk, C.H., (1996). Gradient analysis and disturbance history of temperate forests of the coast range summit plateau, Valdivia, Chile. Revista Chilena de Historia Natural 69, 401411.Google Scholar
Lusk, C.H., (1999). Long-lived light-demanding emergents in southern temperate forests: the case of Weinmannia trichosperma (Cunoniaceae) in southern Chile. Plant Ecology 140, 111115.Google Scholar
Massaferrro, J., Brooks, S.J., (2002). Response of chironomids to Late Quaternary environmental change in the Taitao Peninsula, southern Chile. Journal of Quaternary Science 17, 101111.Google Scholar
Moreno, P.I., (1997). Vegetation and climate change near Lago Llanquihue in the Chilean Lake District between 20,200 and 9500 14C yr B.P.. Journal of Quaternary Science 12, 485500.Google Scholar
Moreno, P.I., (2000). Climate, fire, and vegetation between about 13,000 and 9200 14C yr B.P.. Quaternary Research 54, 8189.Google Scholar
Moreno, P.I., (2004). Millennial-scale climate variability in northwest Patagonia during the last 15,000 yr. Journal of Quaternary Science 19, 3547.Google Scholar
Moreno, P.I., León, A.L., (2003). Abrupt vegetation changes during the last Glacial–Holocene transition in mid-latitude South America. Journal of Quaternary Science 18, 787800.CrossRefGoogle Scholar
Moreno, P.I., Jacobson, G.L., Andersen, B.G., Lowell, T.V., Denton, G.H., (1999). Abrupt vegetation and climate changes during the last glacial maximum and the last Termination in the Chilean Lake District: a case study from Canal de la Puntilla (41°S). Geografiska Annaler. Series A. Physical Geography 81, 285311.Google Scholar
Moreno, P.I., Jacobson, G.L., Lowell, T.V., Denton, G.H., (2001). Interhemispheric climate links revealed from a late-glacial cool episode in southern Chile. Nature 409, 804808.Google Scholar
Mueller-Dombois, D., Ellemberg, H., (1974). Aims and Methods of Vegetation Ecology. Wiley, New York.Google Scholar
Oberdorfer, E., (1960). Pflanzensoziologische Studien in Chile. Cramer, Weinheim.1208.Google Scholar
Schmithüsen, J., (1956). Die raumliche Ordnung der chilenischen Vegetation. Bonner Geographische Abhandlungen 17, 186.Google Scholar
Veblen, T.T., Ashton, D.H., (1978). Catastrophic influences on the vegetation of the Valdivian Andes. Vegetatio 36, 149167.CrossRefGoogle Scholar
Veit, H., (1996). Southern westerlies during the Holocene deduced from geomorphological and pedological studies in the Norte Chico. Palaeogeography, Palaeoclimatology, Palaeoecology 3, 107119.Google Scholar
Villagrán, C., (1985). Análisis palinológico de los cambios vegetacionales durante el Tardiglacial y Postglacial en Chiloé, Chile. Revista Chilena de Historia Natural 58, 5769.Google Scholar
Villagrán, C., (1988a). Expansion of Magellanic moorland during the Late Pleistocene: palynological evidence from northern Isla Grande de Chiloé, Chile. Quaternary Research 30, 304314.Google Scholar
Villagrán, C., (1988b). Late Quaternary vegetation of Southern Isla Grande de Chiloé, Chile. Quaternary Research 29, 294306.Google Scholar
Villagrán, C., (1990). Glacial, Late-Glacial, and Post-Glacial climate and vegetation of the Isla Grande de Chiloé, Southern Chile (41–44°S). Quaternary of South America and Antarctic Peninsula 8, 115.Google Scholar
Villagrán, C., (2001). Un modelo de la historia de la vegetación de la Cordillera de la Costa de Chile central-sur: la hipótesis glacial de Darwin. Revista Chilena de Historia Natural 74, 793803.Google Scholar
Wyrwoll, K.-H., Dong, B., Valdes, P., (2000). On the position of southern westerlies at the Last Glacial Maximum: an outline of AGCM simulation results and evaluation of their implications. Quaternary Science Reviews 19, 881898.Google Scholar