Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-12T16:03:32.592Z Has data issue: false hasContentIssue false

Changes in the lake-grassland ecosystem revealed by multiple proxies in a sediment core from Ganggeng Nur Lake, northern China

Published online by Cambridge University Press:  28 July 2023

Liang Li*
Affiliation:
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China University of Chinese Academy of Sciences, Beijing 100049, China
Zhi Zhang
Affiliation:
School of Ecology and Environment, YuZhang Normal University, 1999 Meiling Avenue, Nanchang 330022, China
Zhenyu Ni
Affiliation:
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China
Weiwei Sun
Affiliation:
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China
Xianqiang Meng
Affiliation:
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China
Enlou Zhang
Affiliation:
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China
Guangwei Zhu
Affiliation:
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China
Yunlin Zhang
Affiliation:
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China
Boqiang Qin
Affiliation:
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China
*
Corresponding authors: Liang Li; Email: lee911214@163.com; Boqiang Qin; Email: qinbq@niglas.ac.cn

Abstract

As the main global terrestrial ecosystem component, grasslands are extremely sensitive to global climate change. With increasing human activities over the last century, grassland ecosystems have been degraded to different degrees. However, the evolution of lake-grassland ecosystems in recent centuries remains unclear due to the dearth of high-resolution records. Here, we present high-resolution lacustrine sediment grain size, pollen (Artemisia, Myriophyllum), Pediastrum, and n-alkane records from Ganggeng Nur Lake to investigate vegetation, lake evolution, and human effects in semiarid northern China. Four stages were identified from the last ca. 150 years: (1) the natural evolution stage (AD 1870–1945), in which there was a wet climate around Ganggeng Nur and the lake level rose from increased runoff; (2) the human disturbance stage (AD 1945–1967), in which the regional climate got drier and human activities began having a detectable effect on the grassland ecosystem; (3) the human transformation stage (AD 1967–2005), in which a completely arid climate coupled with the implementation of a series of land reclamation policies resulted in a large reduction in grassland areas, extensive soil erosion, exacerbated climate change, and shrinking lake areas; and (4) the posttreatment stage (AD 2005–2018), in which soil erosion was alleviated by policy implementation and a favorable humid climate.

Type
Thematic Set: Asian Climate
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bruel, R., Sabatier, P., 2020. serac: an R package for ShortlivEd RAdionuclide chronology of recent sediment cores. Journal of Environmental Radioactivity 225, 106449. https://doi.org/10.1016/j.jenvrad.2020.106449.CrossRefGoogle Scholar
Chen, B., Chen, L., Huang, B., Michishita, R., Xu, B., 2018. Dynamic monitoring of the Poyang Lake wetland by integrating Landsat and MODIS observations. ISPRS Journal of Photogrammetry and Remote Sensing 139, 7587.10.1016/j.isprsjprs.2018.02.021CrossRefGoogle Scholar
Chen, C., Tao, S., Zhao, W., Jin, M., Wang, Z., Li, H., Ren, H., Li, G., 2021. Holocene lake level, vegetation, and climate at the East Asian summer monsoon margin: a record from the Lake Wulanhushao basin, southern Inner Mongolia. Palaeogeography, Palaeoclimatology, Palaeoecology 561, 110051. https://doi.org/10.1016/j.palaeo.2020.110051.CrossRefGoogle Scholar
Chen, F., Chen, S., Zhang, X., Chen, J., Wang, X., Gowan, E.J., Qiang, M., et al., 2020. Asian dust-storm activity dominated by Chinese dynasty changes since 2000 BP. Nature Communications 11, 992. https://doi.org/10.1038/s41467-020-14765-4.CrossRefGoogle Scholar
Chen, J.A., Wan, G., Zhang, D.D., Zhang, F., Huang, R., 2004. Environmental records of lacustrine sediments in different time scales: Sediment grain size as an example. Science in China Series D: Earth Sciences 47, 954960.10.1360/03yd0160CrossRefGoogle Scholar
Chen, X., Chuai, X., Yang, L., Zhao, H., 2012. Climatic warming and overgrazing induced the high concentration of organic matter in Lake Hulun, a large shallow eutrophic steppe lake in northern China. Science of the Total Environment 431, 332338.10.1016/j.scitotenv.2012.05.052CrossRefGoogle ScholarPubMed
Chu, G., Sun, Q., Xie, M., Lin, Y., Shang, W., Zhu, Q., Shan, Y., et al., 2014. Holocene cyclic climatic variations and the role of the Pacific Ocean as recorded in varved sediments from northeastern China. Quaternary Science Reviews 102, 8595.10.1016/j.quascirev.2014.08.008CrossRefGoogle Scholar
Dong, S., Li, Z., Li, M., Wang, N. A., Lu, C., Ning, K., 2022. Quantitative reconstruction of consecutive paleolake-level fluctuations by the groundwater recharged lake in the desert hinterland: a case study in the Badain Jaran Desert, Northwestern China. Catena 212, 106051. https://doi.org/10.1016/j.catena.2022.106051.CrossRefGoogle Scholar
El-Moslimany, A.P., 1990. Ecological significance of common nonarboreal pollen: examples from drylands of the Middle East. Review of Palaeobotany and Palynology 64, 343350.10.1016/0034-6667(90)90150-HCrossRefGoogle Scholar
Fan, J., Jiang, H., Shi, W., Guo, Q., Zhang, S., Wei, X., Xu, H., et al., 2021. A 450-year warming and wetting climate in southern Altay inferred from a Yileimu Lake sediment core. Quaternary International 592, 3750.10.1016/j.quaint.2021.04.035CrossRefGoogle Scholar
Fan, J., Xiao, J., Wen, R., Zhang, S., Huang, Y., Yue, J., Wang, X., et al., 2019. Mineralogy and carbonate geochemistry of the Dali Lake sediments: implications for paleohydrological changes in the East Asian summer monsoon margin during the Holocene. Quaternary International 527, 103112.10.1016/j.quaint.2018.03.019CrossRefGoogle Scholar
Fang, J., Wu, F., Xiong, Y., Li, F., Du, X., An, D., Wang, L., 2014. Source characterization of sedimentary organic matter using molecular and stable carbon isotopic composition of n-alkanes and fatty acids in sediment core from Lake Dianchi, China. Science of the Total Environment 473, 410421.10.1016/j.scitotenv.2013.10.066CrossRefGoogle ScholarPubMed
Feng, L., Han, X., Hu, C., Chen, X., 2016. Four decades of wetland changes of the largest freshwater lake in China: possible linkage to the Three Gorges Dam?. Remote Sensing of Environment 176, 4355.10.1016/j.rse.2016.01.011CrossRefGoogle Scholar
Ficken, K.J., Li, B., Swain, D.L., Eglinton, G., 2000. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry 31, 745749.10.1016/S0146-6380(00)00081-4CrossRefGoogle Scholar
Fu, B., Wang, S., Liu, Y., Liu, J., Liang, W., Miao, C., 2017. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annual Review of Earth and Planetary Sciences 45, 223243.10.1146/annurev-earth-063016-020552CrossRefGoogle Scholar
Gao, H., Ryan, M.C., Li, C., Sun, B., 2017. Understanding the role of groundwater in a remote transboundary lake (Hulun Lake, China). Water 9, 363. https://doi.org/10.3390/w9050363.CrossRefGoogle Scholar
Gong, X.M., Ma, Y., Gui, D.W., Yuan, Z.Y., Lu, G.H., 2007. The ecological fragility appraisal of the natural meadow in a typical basin of arid area. Journal of the Chengdu University of Technology (Science & Technology Edition) 34, 216220.Google Scholar
Grimm, E.C., 1987. CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers & Geosciences 13, 1335.10.1016/0098-3004(87)90022-7CrossRefGoogle Scholar
Grimm, E.C., 2004. TILIA and TILIA.GRAPH view version 2.0.2. Illinois State Museum, Research and Collector Center, Springfield, Illinois.Google Scholar
Guo, T., Yang, Z. F., Chen, H., 2012. Pollen assemblages and their environmental correlates during the past 200 years inferred from sediments records in a shallow lake. Procedia Environmental Sciences 13, 363376.10.1016/j.proenv.2012.01.034CrossRefGoogle Scholar
Hussner, A., Meyer, C., Busch, J., 2009. The influence of water level and nutrient availability on growth and root system development of Myriophyllum aquaticum. Weed Research 49, 7380.10.1111/j.1365-3180.2008.00667.xCrossRefGoogle Scholar
Jankovská, V., Komárek, J., 2000. Indicative value of Pediastrum and other coccal green algae in palaeoecology. Folia Geobotanica 35, 5982.10.1007/BF02803087CrossRefGoogle Scholar
Jiang, H., Han, Y., Guo, M., Gong, X., 2022. Sedimentary records of human activities in China over the past two millennia and implications for the Anthropocene: a review. Science of The Total Environment, 158149. https://doi.org/10.1016/j.scitotenv.2022.158149.CrossRefGoogle Scholar
Jiang, J., Meng, B., Liu, H., Wang, H., Kolpakova, M., Krivonogov, S., Song, M., Zhou, A., Liu, W., Liu, Z., 2021. Water depth control on n-alkane distribution and organic carbon isotope in mid-latitude Asian lakes. Chemical Geology 565, 120070. https://doi.org/10.1016/j.chemgeo.2021.120070.CrossRefGoogle Scholar
Li, H., Gao, Y., Li, Y., Yan, S., Xu, Y., 2017. Dynamic of Dalinor lakes in the Inner Mongolian Plateau and its driving factors during 1976–2015. Water 9, 749. https://doi.org/10.3390/w9100749.CrossRefGoogle Scholar
Li, H.Y., Ming, Q.Z., Zhang, H.C., Duan, L.Z., Zhang, Z.Q., 2014. Paleoclimatic significance of grain-size from lacustrine sediments in China. Scientific Journal of Earth Science 4, 98108.Google Scholar
Li, W., Wang, L., Zhang, Y., Wu, L., Zeng, L., Tuo, Z., 2021. Determining the groundwater basin and surface watershed boundary of Dalinuoer Lake in the middle of Inner Mongolian Plateau, China and its impacts on the ecological environment. China Geology 4, 498508.10.31035/cg2021066CrossRefGoogle Scholar
Liu, H., Yin, Y., Piao, S., Zhao, F., Engels, M., Ciais, P., 2013. Disappearing lakes in semiarid northern China: drivers and environmental impact. Environmental Science & Technology 47, 1210712114.10.1021/es305298qCrossRefGoogle ScholarPubMed
Liu, S., Deng, C., Xiao, J., Li, J., Paterson, G.A., Chang, L., Yi, L., Qin, H., Zhu, R., 2016. High-resolution enviromagnetic records of the last deglaciation from Dali Lake, Inner Mongolia. Palaeogeography, Palaeoclimatology, Palaeoecology 454, 111.10.1016/j.palaeo.2016.04.030CrossRefGoogle Scholar
Liu, X., Wang, S., Shen, J., 2003. The grainsize of the core QH-2000 in Qinghai Lake and its implication for paleoclimate and paleoenvironment. Journal of Lake Sciences 15, 112117.Google Scholar
Ma, R., Duan, H., Hu, C., Feng, X., Li, A., Ju, W., Jiang, J., Yang, G., 2010. A half-century of changes in China's lakes: global warming or human influence?. Geophysical Research Letters 37, L24106. https://doi.org/10.1029/2010GL045514.CrossRefGoogle Scholar
Ma, R., Yang, G., Duan, H., Jiang, J., Wang, S., Feng, X., Li, A., et al., 2011. China's lakes at present: number, area and spatial distribution. Science China Earth Sciences 54, 283289.10.1007/s11430-010-4052-6CrossRefGoogle Scholar
Metrak, M., Sulwinski, M., Chachulski, L., Wilk, M., Suska-Malawska, M., 2015. Creeping environmental problems in the Pamir Mountains: landscape conditions, climate change, wise use and threats. In: Öztürk, M., Hakeem, K., Faridah-Hanum, I., Efe, R. (Eds.), Climate Change Impacts on High-Altitude Ecosystems. Springer, Cham, pp. 665694.10.1007/978-3-319-12859-7_28CrossRefGoogle Scholar
Mo, Y., Zheng, Y., Jin, F., Bao, Y., Jia, Z., 2019. Aerobic methane oxidation under distinct shrinkage scenario of Lake Ganggeng in Inner Mongolia Autonomous Region. Acta Microbiologica Sinica 59, 11051115. [in Chinese]Google Scholar
Prebble, M., Sim, R., Finn, J., Fink, D., 2005. A Holocene pollen and diatom record from Vanderlin Island, Gulf of Carpentaria, lowland tropical Australia. Quaternary Research 64, 357371.10.1016/j.yqres.2005.08.005CrossRefGoogle Scholar
Ratnayake, N.P., Suzuki, N., Okada, M., Takagi, M., 2006. The variations of stable carbon isotope ratio of land plant-derived n-alkanes in deep-sea sediments from the Bering Sea and the North Pacific Ocean during the last 250,000 years. Chemical Geology 228, 197208.10.1016/j.chemgeo.2005.10.005CrossRefGoogle Scholar
Seopela, M. P., McCrindle, R. I., Combrinck, S., Augustyn, W., 2020. Occurrence, distribution, spatio-temporal variability and source identification of n-alkanes and polycyclic aromatic hydrocarbons in water and sediment from Loskop dam, South Africa. Water Research 186, 116350. https://doi.org/10.1016/j.watres.2020.116350.CrossRefGoogle ScholarPubMed
Shulmeister, J., Lees, B.G., 1995. Pollen evidence from tropical Australia for the onset of an ENSO-dominated climate at c. 4000 BP. The Holocene 5, 1018.Google Scholar
Sojinu, S.O., Sonibare, O.O., Ekundayo, O., Zeng, E.Y., 2012. Assessing anthropogenic contamination in surface sediments of Niger Delta, Nigeria with fecal sterols and n-alkanes as indicators. Science of the Total Environment 441, 8996.10.1016/j.scitotenv.2012.09.015CrossRefGoogle ScholarPubMed
Sun, Q., Xie, M., Shi, L., Zhang, Z., Lin, Y., Shang, W., Wang, K., Li, W., Liu, J., Chu, G., 2013. Alkanes, compound-specific carbon isotope measures and climate variation during the last millennium from varved sediments of Lake Xiaolongwan, northeast China. Journal of Paleolimnology 50, 331344.10.1007/s10933-013-9728-4CrossRefGoogle Scholar
Tang, L., Mao, L., Shu, J., Li, C., Shen, C, Zhou, Z., 2016. An Illustrated Handbook of Quaternary Pollen and Spores in China. Science Press, Beijing.Google Scholar
Tao, S., Fang, J., Zhao, X., Zhao, S., Shen, H., Hu, H., Tang, Z., Wang, Z., Guo, Q., 2015. Rapid loss of lakes on the Mongolian Plateau. Proceedings of the National Academy of Sciences 112, 22812286.10.1073/pnas.1411748112CrossRefGoogle ScholarPubMed
Turner, F., Zhu, L., , X., Peng, P., Ma, Q., Wang, J., Hou, J., Lin, Q., Yang, R., Frenzel, P., 2016. Pediastrum sensu lato (Chlorophyceae) assemblages from surface sediments of lakes and ponds on the Tibetan Plateau. Hydrobiologia 771, 101118.10.1007/s10750-015-2620-7CrossRefGoogle Scholar
Waldron, S., Brown, C., Longworth, J., 2010. Grassland degradation and livelihoods in China's western pastoral region: a framework for understanding and refining China's recent policy responses. China Agricultural Economic Review. 2, 298320.10.1108/17561371011078435CrossRefGoogle Scholar
Wang, R., Peng, W., Liu, X., Wu, W., Chen, X., Zhang, S., 2018. Responses of water level in China's largest freshwater lake to the meteorological drought index (SPEI) in the past five decades. Water 10, 137. https://doi.org/10.3390/w10020137.CrossRefGoogle Scholar
Wang, X.L., Yang, H., Zhao, Q., Chen, Y., Chen, J., Wang, L., 2011. Modern sedimentation rates and dry-humid change inferred from grain size records in Dianchi Lake, Yunnan Province. Journal of Geographical Research 30, 161171.Google Scholar
Wang, Y., Yang, H., Zhang, J., Xu, M., Wu, C., 2015. Biomarker and stable carbon isotopic signatures for 100–200 year sediment record in the Chaihe catchment in southwest China. Science of the Total Environment 502, 266275.10.1016/j.scitotenv.2014.09.017CrossRefGoogle ScholarPubMed
Whitney, B.S., Mayle, F. E., 2012. Pediastrum species as potential indicators of lake-level change in tropical South America. Journal of Paleolimnology 47, 601615.10.1007/s10933-012-9583-8CrossRefGoogle Scholar
Wu, D., Zhou, A., Chen, X., Yu, J., Zhang, J., Sun, H., 2015a. Hydrological and ecosystem response to abrupt changes in the Indian monsoon during the last glacial, as recorded by sediments from Xingyun Lake, Yunnan, China. Palaeogeography, Palaeoclimatology, Palaeoecology 421, 1523.10.1016/j.palaeo.2015.01.005CrossRefGoogle Scholar
Wu, J., Zhang, Q., Li, A., Liang, C., 2015b. Historical landscape dynamics of Inner Mongolia: patterns, drivers, and impacts. Landscape Ecology 30, 15791598.10.1007/s10980-015-0209-1CrossRefGoogle Scholar
Xi, Y.Z., Ning, J.C., 1994. Study on pollen morphology of plants from dry and semidry area in China. Yushania 11, 119191.Google Scholar
Xiao, J., Chang, Z., Si, B., Qin, X., Itoh, S., Lomtatidze, Z., 2009. Partitioning of the grain-size components of Dali Lake core sediments: evidence for lake-level changes during the Holocene. Journal of Paleolimnology 42, 249260.10.1007/s10933-008-9274-7CrossRefGoogle Scholar
Xiao, J., Fan, J., Zhou, L., Zhai, D., Wen, R., Qin, X., 2013. A model for linking grain-size component to lake level status of a modern clastic lake. Journal of Asian Earth Sciences 69, 149158.10.1016/j.jseaes.2012.07.003CrossRefGoogle Scholar
Xiao, X., Yao, A., Hillman, A., Shen, J., Haberle, S.G., 2020. Vegetation, climate and human impact since 20 ka in central Yunnan Province based on high-resolution pollen and charcoal records from Dianchi, southwestern China. Quaternary Science Reviews 236, 106297. https://doi.org/10.1016/j.quascirev.2020.106297.CrossRefGoogle Scholar
Yang, X., Yang, C., Meng, Z., 2016. The current situation, problems and suggestions of grassland ecological protection in China. Pratacultural Science 33, 19011909.Google Scholar
Yin, H., Pflugmacher, D., Li, A., Li, Z., Hostert, P., 2018. Land use and land cover change in Inner Mongolia—understanding the effects of China's re-vegetation programs. Remote Sensing of Environment 204, 918930.10.1016/j.rse.2017.08.030CrossRefGoogle Scholar
Zhang, G., Yao, T., Piao, S., Bolch, T., Xie, H., Chen, D., Gao, Y., et al., 2017. Extensive and drastically different alpine lake changes on Asia's high plateaus during the past four decades. Geophysical Research Letters 44, 252260.10.1002/2016GL072033CrossRefGoogle Scholar
Zhang, J., Jin, M., Chen, F., Battarbee, R.W., Henderson, A.C.G., 2003. High-resolution precipitation variations in the northeast Tibetan Plateau over the last 800 years documented by sediment cores of Qinghai Lake. Chinese Science Bulletin 48, 14511456.10.1360/02wd0271CrossRefGoogle Scholar
Zhang, X., Xu, B., Li, J., Xie, Y., Gleixner, G., 2021. Late-Holocene fluctuations of monsoonal Qiangyong Glacier, southern Tibetan Plateau. The Holocene 31, 11381147.10.1177/09596836211003209CrossRefGoogle Scholar
Zhang, Y., Xu, X., Liao, Z., Han, Z., Ji, G., Liang, W., Liu, T., 2021. Response of surface runoff to land use and land cover change and its impact on Daihai Lake shrinkage in Inner Mongolia, China. Theoretical and Applied Climatology 144, 555569.10.1007/s00704-021-03561-9CrossRefGoogle Scholar
Zhang, Z., Shen, Z., Zhang, S., Chen, J., Chen, S., Li, D., Zhang, S., et al., 2023. Lake level evidence for a mid-Holocene East Asian summer monsoon maximum and the impact of an abrupt late-Holocene drought event on prehistoric cultures in north-central China. The Holocene 33, 382399.10.1177/09596836221145362CrossRefGoogle Scholar
Zhao, Y., Liu, H., Li, F., Huang, X., Sun, J., Zhao, W., Herzschuh, U., Tang, Y., 2012. Application and limitations of the Artemisia/Chenopodiaceae pollen ratio in arid and semi-arid China. The Holocene 22, 13851392.10.1177/0959683612449762CrossRefGoogle Scholar
Zhao, Y., Yu, Z., Chen, F., Ito, E., Zhao, C., 2007. Holocene vegetation and climate history at Hurleg Lake in the Qaidam Basin, northwest China. Review of Palaeobotany and Palynology 145, 275288.10.1016/j.revpalbo.2006.12.002CrossRefGoogle Scholar
Zhen, Z., Li, W., Xu, L., Zhang, X., Zhang, J., 2021. Lake-level variation of Dali Lake in mid-east of inner Mongolia since the Late Holocene. Quaternary International 583, 6269.10.1016/j.quaint.2021.03.003CrossRefGoogle Scholar