Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-01T04:53:43.565Z Has data issue: false hasContentIssue false

Early deglaciation and paleolake history of Río Cisnes Glacier, Patagonian Ice Sheet (44°S)

Published online by Cambridge University Press:  31 October 2018

Juan-Luis García*
Affiliation:
Instituto de Geografía, Facultad de Historia, Geografía y Ciencia Política, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 782-0436, Chile
Antonio Maldonado
Affiliation:
Centro de Estudios Avanzados en Zonas Áridas, La Serena 1700000, Chile Instituto de Investigación Multidisciplinario en Ciencia y Tecnología, Universidad de La Serena 1700000, La Serena, Chile Departamento de Biología Marina, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1781421, Chile
María Eugenia de Porras
Affiliation:
Centro de Estudios Avanzados en Zonas Áridas, La Serena 1700000, Chile Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CCT Mendoza CONICET, Av. Ruiz Leal s/n, Mendoza 5500, Argentina
Amalia Nuevo Delaunay
Affiliation:
Centro de Investigación en Ecosistemas de la Patagonia, Moraleda 16, Coyhaique 5951601, Chile
Omar Reyes
Affiliation:
Centro de Estudios del Hombre Austral, Universidad de Magallanes, Punta Arenas 6210427, Chile
Claudia A. Ebensperger
Affiliation:
Instituto de Geografía, Facultad de Historia, Geografía y Ciencia Política, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 782-0436, Chile
Steven A. Binnie
Affiliation:
Institut für Geologie und Mineralogie, Universität zu Köln, Zülpicher Str. 49b, 50674 Köln, Germany
Christopher Lüthgens
Affiliation:
Institute for Applied Geology, University of Natural Resources and Life Sciences (BOKU), Vienna 1190, Austria
César Méndez
Affiliation:
Centro de Investigación en Ecosistemas de la Patagonia, Moraleda 16, Coyhaique 5951601, Chile
*
*Corresponding author at: Instituto de Geografía, Facultad de Historia, Geografía y Ciencia Política, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 782-0436, Chile. E-mail address: jgarciab@uc.cl (J.-L. García).

Abstract

The timing, structure, and landscape change during the Patagonian Ice Sheet deglaciation remains unresolved. In this article, we provide a geomorphic, stratigraphic, and geochronological deglacial record of Río Cisnes Glacier at 44°S and also from the nearby Río Ñirehuao and Río El Toqui valleys (45°S) in Chilean Patagonia. Our 14C, 10Be, and optically stimulated luminescence data indicate that after the last glacial maximum, Río Cisnes Glacier experienced ~100 km deglaciation between >19.0 and 12.3 ka, accompanied by the formation of large glacial paleolakes. Deglaciation was interrupted by several ice readvances, and by 16.9±0.3 ka, Río Cisnes Glacier extended only ~40% of its full glacial extent. The deglaciation of Río Cisnes Glacier and other sensitive Patagonian glaciers occurred at least 1 ka earlier than the ca. 17.8 ka normally assumed for the local termination, coincident with West Antarctic isotope records. This early deglaciation can be linked to an orbital forcing–driven decline of Southern Ocean sea ice associated with a distinct atmospheric warming that is apparent for West Antarctica through Patagonia.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2018. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashley, G.M. 1975. Rhythmic sedimentation in glacial Lake Hitchcock, Massachusetts-Connecticut. In: Jopling, A.V.; McDonald, B.C. (Eds.), Glaciofluvial and Glaciolacustrine sedimentation. Special Publication 23. Society of Economic Paleontologists and Mineralogists, Tulsa, OK, pp. 304320.Google Scholar
Balco, G., Stone, J.O., Lifton, N.A., Dunai, T.J., 2008. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology 3, 174195.Google Scholar
Barcaza, G., Nussbaumer, S.U., Tapia, G., Valdés, J., García, J.L., Videla, Y., Albornoz, A., Arias, V., 2017. Glacier inventory and recent glacier variations in the Andes of Chile, South America. Annals of Glaciology 58, 166180.Google Scholar
Barker, S., Diz, P., Vautravers, M., Pike, J., Knorr, G., Hall, I.R., Broecker, W.S., 2009. Interhemispheric Atlantic seesaw response during the last deglaciation. Nature 457, 10971102.Google Scholar
Bell, C.M., 2008. Punctuated drainage of an ice-dammed quaternary lake in southern South America. Geografiska Annaler: Series A, Physical Geography 90A, 117.Google Scholar
Bendle, J.M., Palmer, A.P., Thorndycraft, V.R., Matthews, I.P., 2017. High-resolution chronology for deglaciation of the Patagonian Ice Sheet at Lago Buenos Aires (46.5°S) revealed through varve chronology and Bayesian age modelling. Quaternary Science Reviews 177, 314339.Google Scholar
Benn, D.I., 1996. Subglacial and subaqueous processes near a glacier grounding line: sedimentological evidence from a former ice-dammed lake, Achnasheen, Scotland. Boreas 25, 2336.Google Scholar
Benn, D.I., Evans, D.J.A., 2010. Glaciers and Glaciation. Hodder Arnold, London.Google Scholar
Bennett, K.D., Haberle, S.G., Lumley, S.H., 2000. The Last Glacial–Holocene transition in southern Chile. Science 290, 325328.Google Scholar
Bentley, M.J., Sugden, D.E., McCulloch, R.D., Hulton, N.R.J., 2005. The landforms and pattern of deglaciation in the Strait of Magellan and Bahía Inútil, southernmost South America. Geografiska Annaler, 87A, 313333.Google Scholar
Binnie, S.A., Dunai, T.J., Voronina, E., Goral, T., Heinze, S., Dewald, A., 2015. Separation of Be and Al for AMS using single-step column chromatography. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 361, 397401.Google Scholar
Blomdin, R., Murray, A., Thomsen, K., Buylaert, J.-P., Sohbati, R., Jansson, K., Alexanderson, H., 2012. Timing of the deglaciation in southern Patagonia: testing the applicability of K-feldspar IRSL. Quaternary Geochronology 10, 264272.Google Scholar
Boex, J., Fogwill, C., Harrison, S., Glasser, N.F., Hein, A., Schnabel, C., Xu, S., 2013. Rapid thinning of the late Pleistocene Patagonian Ice Sheet followed migration of the Southern Westerlies. Scientific Reports 3, 16.Google Scholar
Bøtter-Jensen, L., Andersen, C., Duller, G., Murray, A., 2003. Developments in radiation, stimulation and observation facilities in luminescence measurements. Radiation Measurements 37, 535541.Google Scholar
Bøtter-Jensen, L., Bulur, E., Duller, G., Murray, A., 2000. Advances in luminescence instrument systems. Radiation Measurements 32, 523528.Google Scholar
Boulton, G.S., 1987. A theory of drumlin formation by subglacial sediment deformation. In: Menzies, J., Rose, J. (Eds.), Drumlin Symposium. A.A. Balkema, Rotterdam, the Netherlands, pp. 2580.Google Scholar
Caniupán, M., Lamy, F., Lange, C.B., Kaiser, J., Arz, H., Kilian, R., Baeza Urrea, O., et al., 2011. Millennial-scale sea surface temperature and Patagonian Ice Sheet changes off southernmost Chile (53ºS) over the past ~60kyr. Paleoceanography 26, PA3221.Google Scholar
Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., McCabe, A.M., 2009. The last glacial maximum. Science 325, 710714.Google Scholar
Collins, L.G., Pike, J., Allen, C.S., Hodgson, D.A., 2012. High-resolution reconstruction of southwest Atlantic sea-ice and its role in the carbon cycle during marine isotope stages 3 and 2. Paleoceanography 27, PA3217.Google Scholar
Darvill, C.M., Bentley, M.J., Stokes, C.R., Shulmeister, J., 2016. The timing and cause of glacial advances in the southern mid-latitudes during the last glacial cycle based on a synthesis of exposure ages from Patagonia and New Zealand. Quaternary Science Reviews 149, 200214.Google Scholar
Denton, G.H., Anderson, R.F., Toggweiler, J.R., Edwards, R.L., Schaefer, J.M., Putnam, A.E., 2010. The last glacial termination. Science 328, 16521656.Google Scholar
Denton, G.H., Lowell, T.V., Heusser, C.J., Schlüchter, C., Andersen, B.G., Heusser, L.E., Moreno, P.I., Marchant, D.R., 1999. Geomorphology, stratigraphy, and radiocarbon chronology of Llanquihue drift in the area of the southern Lake District, Seno Reloncaví, and Isla Grande de Chiloé, Chile. Geografiska Annaler: Series A, Physical Geography 81A, 167229.Google Scholar
De Porras, M.E., Maldonado, A., Abarzúa, A.M., Cárdenas, M., Francois, J.P., Martel-Cea, A., Stern, C.R., Méndez, C., Reyes, O., 2012. Postglacial vegetation, fire and climate dynamics at Central Chilean Patagonia (Lake Shaman, 44°S), Chile. Quaternary Science Reviews 50, 7185.Google Scholar
De Porras, M.E., Maldonado, A., Quintana, F., Martel-Cea, A., Reyes, O., Méndez, C., 2014. Environmental and climatic changes at central Chilean Patagonia since the Late Glacial (Mallín El Embudo, 44°S). Climate of the Past 10, 10631078.Google Scholar
Dewald, A., Heinze, S., Jolie, J., Zilges, A., Dunai, T., Rethemeyer, J., Melles, M., et al. 2013. CologneAMS, a dedicated center for accelerator mass spectrometry in Germany. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 294, 1823.Google Scholar
Dirección General de Aguas (DGA). 1987. Balance Hídrico de Chile (accessed August 31, 2017). DGA, Ministerio de Obras Públicas, Gobierno de Chile, Santiago de Chile. http://sad.dga.cl/ipac20/ipac.jsp?session=1L042K4V37618.2796676&profile=cirh&uri=link=3100006~!1527~!3100001~!3100002&aspect=subtab13&menu=search&ri=2&source=~!biblioteca&term=Balance+h%C3%ADdrico+de+Chile+%2F&index=ALTITLE.Google Scholar
Douglass, D.C., Singer, B.S., Kaplan, M.R., Mickelson, D.M., Caffee, M.W., 2006. Cosmogenic nuclide surface exposure dating of boulders on last-glacial and late-glacial moraines, Lago Buenos Aires, Argentina: interpretive strategies and paleoclimate implications. Quaternary Geochronology 1, 4358.Google Scholar
Duller, G.A.T., 2006. Single grain optical dating of glacigenic deposits. Quaternary Geochronology 1, 296304.Google Scholar
Escobar, F., Vidal, F., Garin, C., Naruse, R., 1992. Water balance in the Patagonia Icefield. In: Naruse, R., Aniya, M. (Eds.), Glaciological Researches in Patagonia, 1990. Japanese Society of Snow and Ice, Nagoya, Japan, pp. 109–119.Google Scholar
Evans, D.J.A., Hiemstra, J.H., Cofaigh, C., Ó, 2012. Stratigraphic architecture and sedimentology of a Late Pleistocene subaqueous moraine complex, southwest Ireland. Journal of Quaternary Science 27, 5163.Google Scholar
Evans, D.J.A., Rother, H., Hyatt, O.M., Shulmeister, J., 2013. The glacial sedimentology and geomorphic evolution of an outwash head/moraine-dammed lake, South Island, New Zealand. Sedimentary Geology 284/285, 4575.Google Scholar
Eyles, N., Eyles, C.H., Miall, A.D., 1983. Lithofacies types and vertical profile models: an alternative approach to the description and environmental interpretation of glacial diamict and diamictite sequences. Sedimentology 30, 393410.Google Scholar
Galbraith, R., Roberts, R., Laslett, G., Yoshida, H., Olley, J., 1999. Optical dating of single and multiple grains of Quartz from Jinmium rock shelter, northern Australia: Part I, experimental design and statistical models. Archaeometry 41, 339364.Google Scholar
García, J.L., Hein, A.S., Binnie, S.A., Gómez, G.A., González, M.A., Dunai, T.J., 2018. The MIS 3 maximum of the Torres del Paine and Última Esperanza ice lobes in Patagonia and the pacing of southern mountain glaciation. Quaternary Science Reviews 185, 926 Google Scholar
García, J.L., Kaplan, M.R., Hall, B.L., Schaefer, J.M., Vega, R.M., Schwartz, R., Finkel, R., 2012. Glacier expansion in southern Patagonia throughout the Antarctic cold reversal. Geology 40, 859862.Google Scholar
García, J.L., Strelin, J.A., Vega, R.M., Hall, B.L., Stern, C.R., 2015. Deglacial ice-marginal glaciolacustrine environments and structural moraine building in Torres del Paine, Chilean southern Patagonia. Andean Geology 42, 190212.Google Scholar
Garreaud, R.D., Vuille, M., Compagnucci, R., Marengo, J., 2009. Present-day South America climate. Palaeogeography, Palaeoclimatology, Palaeoecology 281, 180195.Google Scholar
Glasser, N., Harrison, S., Ivy-Ochs, S., Duller, G., Kubik, P., 2006. Evidence from the Rio Bayo valley on the extent of the north Patagonian ice field during the late Pleistocene–Holocene transition. Quaternary Research, 65, 7077.Google Scholar
Glasser, N., Harrison, S., Schnabel, C., Fabel, D., Jansson, K.N., 2012.Younger Dryas and early Holocene age glacier advances in Patagonia. Quaternary Science Reviews 58, 717.Google Scholar
Glasser, N., Jansson, K., Duller, G., Singarayer, J., Holloway, M., Harrison, S., 2016. Glacial lake drainage in Patagonia (13-8 kyr) and response of the adjacent Pacific Ocean. Scientific Reports 6, 17.Google Scholar
Gustavson, T.C., 1975. Sedimentation and physical limnology in proglacial Malaspina Lake southeastern Alaska. In: Jopling, A.V., McDonald, B.C. (Eds.), Glaciofluvial and Glaciolacustrine Sedimentation. Special Publication 23. Society of Economic Paleontologists and Mineralogists, Tulsa, OK, pp. 249263.Google Scholar
Hall., B.L., Denton, G.H., Lowell, T.V., Bromley, G.R.M., Putnam, A.E., 2017. Retreat of the Cordillera Darwin icefield during Termination I. Cuadernos de Investigación Geográfica 43(2), 751766.Google Scholar
Hall, B.L., Porter, C.T., Denton, G.H., Lowell, T.V., Bromley, G.R.M., 2013. Extensive recession of Cordillera Darwin glaciers in southernmost South America during Heinrich Stadial 1. Quaternary Science Reviews 62, 4955.Google Scholar
Harrison, S., Glasser, N., Winchester, V., Haresign, E., Warren, C., Duller, G., Bailey, R., Ivy-Ochs, S., Jansson, P., Kubik, P., 2008. Glaciar León, Chilean Patagonia: late-Holocene chronology and geomorphology. Holocene 18, 643652.Google Scholar
Hein, A.S., Hulton, N.R.J., Dunai, T.J., Kaplan, M.R., Sugden, D., Xu, S., 2010. The chronology of the Last Glacial Maximum and deglacial events in central Argentine Patagonia. Quaternary Science Reviews 29, 12121227.Google Scholar
Henríquez, W.I., Villa-Martínez, R., Vilanova, I., De Pol-Holz, R., Moreno, P.I., 2017. The last glacial termination on the eastern flank of the central Patagonian Andes (47°S). Climate of the Past 13, 879895.Google Scholar
Heusser, C.J., Heusser, L.E., Lowell, T.V., 1999. Paleoecology of the Southern Chilean Lake District-Isla Grande de Chiloé during middle–late Llanquihue glaciation and deglaciation. Geografiska Annaler: Series A, Physical Geography 81A, 231284.Google Scholar
Hogg, A.G., Hua, Q., Blackwell, P.G., Niu, M., Buck, C.E., Guilderson, T.P., Heaton, T.J., et al., 2013. SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55, 18891903.Google Scholar
Horta, L.R., Georgieff, S.M., Aschero, C.A., 2015. Chronology of bathymetric variations of the Pueyrredon-Posadas-Salitroso lacustrine system during the Late Pleistocene to Early Holocene. Quaternary International 377, 91101.Google Scholar
Hulton, N.R.J., Purves, R.S., McCulloch, R.D., Sugden, D.E., Bentley, M.J., 2002. The Last Glacial Maximum and deglaciation in southern South America. Quaternary Science Reviews 21, 233241.Google Scholar
Huntley, D., Lamothe, M., 2001. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Canadian Journal of Earth Sciences 38, 10931106.Google Scholar
Johnsen, T.F., Brennand, T.A., 2006. The environment in and around ice-dammed lakes in the moderately high relief setting of the southern Canadian Cordillera. Boreas 35, 106125.Google Scholar
Jopling, A.V., 1967. Origin of laminae deposited by the movement of ripples along a streambed: a laboratory study. Journal of Geology 75(3), 287305.Google Scholar
Kaplan, M.R., Ackert, R.P., Singer, B.S., Douglass, D.C., Kurz, M.D., 2004. Cosmogenic nuclide chronology of millennial-scale glacial advances during O-isotope stage 2 in Patagonia. Geological Society of America Bulletin 116, 308321.Google Scholar
Kaplan, M.R., Fogwill, C.J., Sugden, D.E., Hulton, N., Kubik, P.W., Freeman, S., 2008. Southern Patagonian glacial chronology for the last glacial period and implications for Southern Ocean climate. Quaternary Science Reviews 27, 284294.Google Scholar
Kaplan, M.R., Strelin, J.A., Schaefer, J.M., Denton, G.H., Finkel, R.C., Schwartz, R., Putnam, A.E., Vandergoes, M.J., Goehring, B.M., Travis, S.G., 2011. In-situ cosmogenic 10Be production rate at Lago Argentino, Patagonia: implications for late-glacial climate chronology. Earth and Planetary Science Letters 309, 2132.Google Scholar
Kreutzer, S., Schmidt, C., Fuchs, M., Dietze, M., Fuchs, M., 2012. Introducing an R package for luminescence dating analysis. Ancient TL 30, 18.Google Scholar
Kulig, G., 2005. Erstellung einer Auswertesoftware zur Altersbestimmung mittels Lumineszenzverfahren unter spezieller Berücksichtigung des Einflusses radioaktiver Ungleichgewichte in der 238U-Zerfallsreihe. 35 p., B.Sc. thesis, Freiberg (Technische Universität Bergakademie Freiberg).Google Scholar
Lal, D., 1991. Cosmic ray labeling of erosion surfaces: in-situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104, 424439.Google Scholar
Lamy, F., Kaiser, J., Ninnemann, U., Hebbeln, D., Arz, H.W., Stoner, J., 2004. Antarctic timing of surface water changes off Chile and Patagonian Ice Sheet response. Science 304, 19591962.Google Scholar
Lemieux-Dudon, B., Layo, E., Petit, J.R., Waelbroeck, C., Svensson, A., Ritz, C., Barnola, J.M., Narcisi, B.M., Parrenin, F., 2010. Consistent dating for Antarctic and Greenland ice cores. Quaternary Science Reviews 29, 820.Google Scholar
Lifton, N., Sato, T., Dunai, T., 2014. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth and Planetary Science Letters 386, 149160.Google Scholar
Lüthgens, C., Böse, M., Preusser, F., 2011. Age of the Pomeranian ice-marginal position in northeastern Germany determined by optically stimulated luminescence (OSL) dating of glaciofluvial sediments. Boreas 40, 598615.Google Scholar
Markgraf, V., Whitlock, C., Haberle, S., 2007. Vegetation and fire history during the last 18,000 cal yr B.P. in Southern Patagonia: Mallín Pollux, Coyhaique, Province Aisén (45°41'30” S, 71°50'30” W, 640 m elevation). Palaeogeography, Palaeoclimatology. Palaeoecology 254, 492507.Google Scholar
McCulloch, R.D., Bentley, M.J., Purves, R.S., Hulton, N.R.J., Sugden, D.E., Clapperton, C.M., 2000. Climatic inferences from glacial and palaeoecological evidence at the last glacial termination, southern South America. Journal of Quaternary Science 15, 409417.Google Scholar
McCulloch, R.D., Fogwill, C.J., Sugden, D.E., Bentley, M.J., Kubik, P.W., 2005. Chronology of the last glaciation in central Strait of Magellan and Bahia Inutil, southernmost South America. Geografiska Annaler: Series A, Physical Geography 87A, 289312.Google Scholar
Mena, F., Stafford, T., 2006. Contexto estratigráfico y fechación directa de esqueletos humanos del Holoceno Temprano en Cueva Baño Nuevo (Patagonia Central, Chile). In: Jiménez, J. (Ed.), Segundo Simposio Internacional el Hombre Temprano en América. Instituto Nacional de Antropología e Historia, Mexico City, pp. 139154.Google Scholar
Mendelova, M., Hein, A.S., McCulloch, R., Davies, B., 2017. The last glacial maximum and deglaciation in central Patagonia, 44-49ºS. Cuadernos de Investigación Geográfica 43(2), 719750.Google Scholar
Méndez, C., Delaunay, A.N., Reyes, O., Ozán, I.L., Belmar, C., López, P., 2018. The initial peopling of Central Western Patagonia (southernmost South America): late Pleistocene through Holocene site context and archaeological assemblages from Cueva de la Vieja site. Quaternary International 473B, 261277.Google Scholar
Méndez, C., de Porras, M.E., Maldonado, A., Reyes, O., Nuevo Delaunay, A., García, J.-L., 2016. Human effects in Holocene fire dynamics in Central Western Patagonia (~44° S, Chile). Frontiers in Ecology and Evolution 4, 100.Google Scholar
Méndez, C., Reyes, O., Velásquez, H., Maldonado, A., 2010. Comentario sobre una edad 14C en el límite Pleistoceno/Holoceno de alero El Toro, bosque siempreverde de Aisén. Magallania 38, 281286.Google Scholar
Mercer, J.H., 1972. Chilean glacial chronology 20,000 to 11,000 carbon-14 years ago: some global comparisons. Science 172, 11181120.Google Scholar
Mercer, J.H., 1976. Glacial history of southernmost South America. Quaternary Research 6, 125166.Google Scholar
Mix, A.C., Bard, E., Schneider, R., 2001. Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quaternary Science Reviews 20, 627657.Google Scholar
Monnin, E., Indermühle, A., Dällenbach, A., Flückiger, J., Stauffer, B., Stocker, T.F., Raynaud, D., Barnola, J.M., 2001. Atmospheric CO2 concentrations over the Last Glacial termination. Science 291, 112114.Google Scholar
Montade, V., Nebout, N.C., Kissel, C., Haberle, S.G., Siani, G., Michel, E., 2013. Vegetation and climate changes during the last 22,000 yr from a marine core near Taitao Peninsula, southern Chile. Palaeogeography, Palaeoclimatology, Palaeoecology 369, 335348.Google Scholar
Moreno, P.I., Denton, G.H., Moreno, H., Lowell, T.V., Putnam, A.E., Kaplan, M.R., 2015. Radiocarbon chronology of the last glacial maximum and its termination in northwestern Patagonia. Quaternary Science Reviews 122, 233249.Google Scholar
Murray, D.S., Carlson, A.E., Singer, B.S., Anslow, F.S., He, F., Caffee, M., Marcott, S.A., Liu, Z., Otto-Bliesner, B.L., 2012. Northern Hemisphere forcing of the last deglaciation in southern Patagonia. Geology 40(7), 631634.Google Scholar
Nishiizumi, K., Imamura, M., Caffee, M.W., Southon, J.R., Finkel, R.C., McAninch, J., 2007. Absolute calibration of Be-10 AMS standards. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 258, 403413.Google Scholar
Preusser, F., Degering, D., Fuchs, M., Hilgers, A., Kadereit, A., Klasen, N., Krbetschek, M., Richter, D., Spencer, J., 2008. Luminescence dating: basics, methods and applications. Eiszeitalter und Gegenwart Quaternary Science Journal 57, 95149.Google Scholar
Rades, E., Fiebig, M., Lüthgens, C., 2018. Luminescence dating of the Rissian type section in southern Germany as a base for correlation. Quaternary International 478, 3850.Google Scholar
Rhodes, E., 2011. Optically stimulated luminescence dating of sediments over the past 200,000 years. Annual Review of Earth and Planetary Sciences 39, 461488.Google Scholar
Rivera, A., Acuña, C., Casassa, G., Bown, F., 2002. Use of remotely sensed and field data to estimate the contribution of Chilean glaciers to eustatic sea-level rise. Annals of Glaciology 34, 367372.Google Scholar
Sagredo, E.A., Kaplan, M.R., Araya, P.S., Lowell, T.V., Aravena, J.C., Moreno, P.I., Kelly, M.A., Schaefer, J.M., 2018. Trans-pacific glacial response to the Antarctic Cold Reversal in the southern mid-latitudes. Quaternary Science Reviews 188, 160166.Google Scholar
Siani, G., Colin, C., Michel, E., Carel, M., Richter, T., Kissel, C., Dewilde, F., 2010. Late Glacial to Holocene terrigenous sediment record in the Northern Patagonian margin: paleoclimate implications. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 2636.Google Scholar
Smedley, R., Glasser, N., Duller, G., 2016. Luminescence dating of glacial advances at Lago Buenos Aires (∼46 °S), Patagonia. Quaternary Science Reviews 134, 5973.Google Scholar
Stern, C.R., de Porras, M.E., Maldonado, A., 2015. Tephrochronology of the upper Río Cisnes valley (44°S), southern Chile. Andean Geology 42, 173189.Google Scholar
Stone, J.O., 2000. Air pressure and cosmogenic isotope production. Journal of Geophysical Research 105, 2375323759.Google Scholar
Strelin, J.A., Denton, G.H., Vandergoes, M.J., Ninnemann, U.S., Putnam, A.E., 2011. Radiocarbon chronology of the late-glacial Puerto Bandera moraines, southern Patagonian Icefield, Argentina. Quaternary Science Reviews 30, 25512569.Google Scholar
Stuiver, M., Reimer, P.J., Reimer, R.W., 2017. CALIB 7.1 (accessed August 31, 2017). http://calib.org. Google Scholar
Sugden, D.E., Bentley, M.J., Fogwill, C.J., Hulton, N.R.J., McCulloch, R.D., Purves, R.S., 2005. Late-glacial glacier events in southernmost South America: a blend of “northern” and “southern” hemispheric climatic signals? Geografiska Annaler: Series A, Physical Geography 87A, 273288.Google Scholar
Turner, K.J., Fogwill, C.J., McCulloch, R.D., Sugden, D.E., 2005. Deglaciation of the eastern flank of the North Patagonian Icefield and associated continental-scale lake diversions. Geografiska Annaler: Series A, Physical Geography 87A, 363374.Google Scholar
Villa-Martínez, R., Moreno, P.I., Valenzuela, M.A., 2012. Deglacial and postglacial vegetation changes on the eastern slopes of the central Patagonian Andes (47°S). Quaternary Science Reviews 32, 8699.Google Scholar
West Antarctic Ice Sheet (WAIS) Divide Project Members, 2013. Onset of deglacial warming in West Antarctica driven by local orbital forcing. Nature 500, 440444.Google Scholar
Weller, D.J., de Porras, M.E., Maldonado, A., Méndez, C., Stern, C.R., 2017. Holocene tephrochronology of the lower Río Cisnes valley, southern Chile. Andean Geology 44, 229248.Google Scholar
Wintle, A., 2008. Luminescence dating: where it has been and where it is going. Boreas 37, 471482.Google Scholar
Supplementary material: PDF

García et al. supplementary material

García et al. supplementary material 1

Download García et al. supplementary material(PDF)
PDF 67.6 KB
Supplementary material: PDF

García et al. supplementary material

García et al. supplementary material 2

Download García et al. supplementary material(PDF)
PDF 652.9 KB
Supplementary material: PDF

García et al. supplementary material

García et al. supplementary material 3

Download García et al. supplementary material(PDF)
PDF 68.7 KB