Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-21T19:06:14.328Z Has data issue: false hasContentIssue false

Implications for catchment weathering, provenance, and climatic records from a late Pleistocene to present sedimentary sequence in Gujarat, India

Published online by Cambridge University Press:  23 September 2022

Kamlesh Kumar*
Affiliation:
Birbal Sahni Institute of Palaeosciences 53, University Road, Lucknow, 226007, India
Anupam Sharma
Affiliation:
Birbal Sahni Institute of Palaeosciences 53, University Road, Lucknow, 226007, India
Pradeep Srivastava
Affiliation:
Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
Biswajeet Thakur
Affiliation:
Birbal Sahni Institute of Palaeosciences 53, University Road, Lucknow, 226007, India
*
*Corresponding author email address: kamleshk2508@gmail.com

Abstract

To ascertain weathering, provenance, and paleoclimate of the last ca. 29 ka in mainland Gujarat, western India, a sedimentary profile of ~7.5 m was measured, described, and sampled at Pratappura and a multiproxy analysis was conducted. To determine weathering, silty-sand and sandy-silt facies were analyzed, and log Na2O/K2O versus log SiO2/Al2O3 was plotted, which shows clustering in the quartz arenite and sub-litharenite categories, indicating low to moderate weathering. The chemical index of alteration (CIA) is 55–74, and was plotted versus the index of chemical variability (ICV) of 1.50, with samples clustered mainly between subalkali basalt and picrite, indicating the dominance of a mafic component. While depleted chondrite normalized light rare earth element (REE) (La/Yb <1) levels suggest the prevalence of a mafic source in the catchment, identical chondrite normalized REE patterns indicate that sediments were well homogenized. Using multiple proxies, the measured profile was subdivided into five paleoclimatic zones. Zone-I (29–18 ka) exhibits decreasing moisture, Corg, χlf, Al2O3, TiO2, and Fe2O3 trends, while higher values of CO3−2 and δ13C indicate a change from a warm-humid to semiarid climate. Zone-II (18–11 ka) shows signs of the beginning of aridity ca. 18 ka during the Last Glacial Maximum (LGM). Several proxies in zone-III show wetter climatic conditions from the early Holocene (ca. 11–4 ka) due to the onset of the SW monsoon, with the trend continuing in zone-IV (4–2 ka). In zone-V, the climate appears to have been similar to the modern conditions in the area from 2 ka–present.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrews, J.E., Singhvi, A.K., Kailath, J.A., Kuhn, R., Dennis, P.F., Tandon, S.K., Dhir, R.P., 1998. Do stable isotope data from calcrete record Late Pleistocene monsoonal climate variation in the Thar Desert of India? Quaternary Research 50, 240251.CrossRefGoogle Scholar
Armstrong-Altrin, J.S., 2015. Evaluation of two multidimensional discrimination diagrams from beach and deep-sea sediments from the Gulf of Mexico and their application to Precambrian clastic sedimentary rocks. International Geology Review 57, 14461461.CrossRefGoogle Scholar
Bengtsson, L., Enell, M., 1986. Chemical analysis. In: Berglund, B.E. (Ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley & Sons, Chichester, pp. 423451.Google Scholar
Bhandari, S., Maurya, D.M., Chamyal, L.S., 2005. Late Pleistocene alluvial plain sedimentation in Lower Narmada Valley, Western India: palaeoenvironmental implications. Journal of Asian Earth Sciences 24, 433444.CrossRefGoogle Scholar
Bhattacharya, F., Shukla, A.D., Patel, R.C., Rastogi, B.K., Juyal, N., 2017. Sedimentology, geochemistry and OSL dating of the alluvial succession in the northern Gujarat alluvial plain (western India)–A record to evaluate the sensitivity of a semiarid fluvial system to the climatic and tectonic forcing since the late Marine Isotopic Stage 3. Geomorphology 297, 119.CrossRefGoogle Scholar
Biswas, S.K., 1987. Regional tectonic framework, structure and evolution of the western marginal basins of India. Tectonophysics 135, 307327.CrossRefGoogle Scholar
Bridge, J.S., 1985. Paleochannel patterns inferred from alluvial deposits; a critical evaluation. Journal of Sedimentary Petrology 55, 579589.Google Scholar
Bristow, C., 1996. Reconstructing fluvial channel morphology from sedimentary sequences. In: Carling, P.A., Dawson, M.R. (Eds.), Advances in Fluvial Dynamics and Stratigraphy. Wiley, New York, pp. 351371.Google Scholar
Cant, D.J., Walker, R.G., 1978. Fluvial processes and facies sequences in the sandy braided South Saskatchewan River, Canada. Sedimentology 25, 625648.CrossRefGoogle Scholar
Coplen, T.B., 1994. Reporting of stable hydrogen, carbon, and oxygen isotopic abundances. Pure and Applied Chemistry 66, 273276.CrossRefGoogle Scholar
Cox, R., Lowe, D.R., Cullers, R.L., 1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta 9, 29192940CrossRefGoogle Scholar
Day, P.R., 1965. Particle fractionation and particle-size analysis. In: Black, C.A. (Ed.), Methods of Soil Analysis. Part I. Agronomy Monographs 9.1, American Society of Agronomy, Madison, Wisconsin, pp. 545577.Google Scholar
Dean, W.E., 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition; comparison with other methods. Journal of Sedimentary Petrology 44, 242248.Google Scholar
ESRI, 2011. ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute.Google Scholar
Evans, M.E., Heller, F., 1994. Magnetic enhancement and palaeoclimate. Study of a loess/palaeosol couplet across the Loess Plateau of China. Geophysical Journal International 117, 257264.CrossRefGoogle Scholar
Fredlund, G.G., Tieszen, L.T., 1994. Modern phytolith assemblages from the North American Great Plains. Journal of Biogeography 21, 321335.CrossRefGoogle Scholar
Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M., 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, Northern Australia: Part I, experimental design and statistical models. Archaeometry 41, 339364.CrossRefGoogle Scholar
Gates-Rector, S., Blanton, T.N., 2019. The Powder Diffraction File: A quality materials characterization database. Powder Diffraction 34, 352360.CrossRefGoogle Scholar
Goldich, S.S., 1938. A study on rock weathering. Journal of Geology 46, 1758.CrossRefGoogle Scholar
Herzchuh, U., 2006. Paleo-moisture evolution in monsoonal central Asia during the last 50,000 years. Quaternary Science Review 25, 163178.CrossRefGoogle Scholar
Jackson, M.L., 1956. Soil Chemical Analysis-Advanced Course. Published by the author, College of Agriculture, Department of Soils, University of Wisconsin, Madison, USA.Google Scholar
Jain, M., Tandon, S.K., 2003. Quaternary alluvial stratigraphy and palaeoclimactic reconstruction at the Thar margin. Current Science 84, 10481055.Google Scholar
Jain, M., Tandon, S.K., Bhatt, S.C., 2004. Late Quaternary stratigraphic development in the lower Luni, Mahi and Sabarmati river basins, western India. Journal of Earth System Science 113, 453471.CrossRefGoogle Scholar
Juyal, N., Chamyal, L.S., Bhandari, S., Bhushan, R., Singhvi, A.K., 2006. Continental record of the southwest monsoon during the last 130 ka: evidence from the southern margin of the Thar Desert, India. Quaternary Science Reviews 25, 26322650.CrossRefGoogle Scholar
Juyal, N., Chamyal, L.S., Bhandari, S., Maurya, D.M., Singhvi, A.K., 2004. Environmental changes during Late Pleistocene in the Orsang River basin, Western India. Journal of the Geological Society of India 64, 471479.Google Scholar
Juyal, N., Kar, A., Rajaguru, S.N., Singhvi, A.K., 2003. Luminescence chronology of aeolian deposition during the Late Quaternary on the southern margin of Thar Desert, India. Quaternary International 104, 8798.CrossRefGoogle Scholar
Juyal, N., Raj, R., Maurya, D.M., Chamyal, L.S., and Singhvi, A.K., 2000. Chronology of Late Pleistocene environmental changes in the lower Mahi basin, western India. Journal of Quaternary Science 15, 501508.3.0.CO;2-J>CrossRefGoogle Scholar
Kale, V.S., Rajaguru, S.N., 1987. Late Quaternary alluvial history of the northwestern Deccan upland region. Nature 325, 612614.CrossRefGoogle Scholar
Kale, V.S., Singhvi, A.K., Mishra, P.K., Banerjee, D., 2000. Sedimentary records and luminescence chronology of Late Holocene palaeofloods in the Luni River, Thar Desert, northwest India. Catena 40, 337358.CrossRefGoogle Scholar
Khadkikar, A.S., Chamyal, L.S., Ramesh, R., 2000. The character and genesis of calcrete in late Quaternary alluvial deposits, Gujarat, western India, and its bearing on the interpretation of ancient climates. Palaeogeography, Palaeoclimatology, Palaeoecology 162, 239261.CrossRefGoogle Scholar
Khanna, P.P., Saini, N.K., Mukherjee, P.K., Purohit, K.K., 2009. An appraisal of ICP-MS technique for determination of REEs: long term QC assessment of silicate rock analysis. Himalayan Geology 30(1), 9599.Google Scholar
Knox, J.C., 1995. Fluvial systems since 20,000 years BP. In: Gregory, K.J., Starkel, L., Baker, V.R. (Eds.), Global Continental Palaeohydrology. Wiley, New York, pp. 87108.Google Scholar
Kumar, K., Agrawal, S., Sharma, A., Pandey, S., 2019. Indian summer monsoon variability and vegetation changes in the core monsoon zone, India, during the Holocene: A multiproxy study. The Holocene 29, 110119.CrossRefGoogle Scholar
Kunze, G.W., 1965. Pretreatment for mineralogical analysis. In: Black, C.A. (Ed.), Methods of Soil Analysis. Part I. Agronomy Monographs 9.1, American Society of Agronomy, Madison, Wisconsin, pp. 568577.Google Scholar
Laskar, A.H., Sharma, N., Ramesh, R., Jani, R.A., Yadava, M.G., 2010. Paleoclimate and paleovegetation of Lower Narmada Basin, Gujarat, Western India, inferred from stable carbon and oxygen isotopes. Quaternary International 227, 183189.CrossRefGoogle Scholar
Lee, Y., 2002. Provenance derived from the geochemistry of late Paleozoic–early Mesozoic mudrocks of the Pyeongan Supergroup, Korea. Sedimentary Geology 149, 219235.CrossRefGoogle Scholar
Maher, B.A., Thompson, R., 1992. Paleoclimatic significance of the mineral magnetic record of the Chinese Loess and paleosols. Quaternary Research 37, 155170.CrossRefGoogle Scholar
Maurya, D.M., Chamyal, L.S., Merh, S.S., 1995. Tectonic evolution of the Central Gujarat plain, western India. Current Science 69, 610613.Google Scholar
Maurya, D.M., Malik, J.N., Raj, R., Chamyal, L.S., 1997. Holocene valley-fill terraces in the Lower Mahi valley, Gujarat. Current Science 73, 539542.Google Scholar
Maurya, D.M., Raj, R., Chamyal, L.S., 2000. History of tectonic evolution of Gujarat alluvial plains, western India during Quaternary: a review. Journal of the Geological Society of India 55, 343366.Google Scholar
McDonough, W.F., Sun, S.S., 1995. The composition of the earth. Chemical Geology 120, 223253.CrossRefGoogle Scholar
McLennan, S.M., 1993. Weathering and global denudation. The Journal of Geology 101, 295303.CrossRefGoogle Scholar
McLennan, S.M., 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry Geophysics Geosystems 2, 1021.CrossRefGoogle Scholar
Merh, S.S., Chamyal, L.S., 1997. The Quaternary geology of Gujarat Alluvial Plains. Proceedings of the Indian National Science Academy 63, 198.Google Scholar
Moore, I.D., Grayson, R.B., Ladson, A.R., 1991. Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrological Processes 5, 330.CrossRefGoogle Scholar
Mulholland, S.C., Rapp, G. Jr., 1992. A morphological classification of grass silica-bodies. In: Mulholland, S.C., Rapp, G. Jr. (Eds), Phytolith Systematics. Emerging Issues. Advances in Archaeological and Museum Science, Vol. 1, Springer, Boston, pp. 6590.CrossRefGoogle Scholar
Murray, A.S., Wintle, A.G., 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 5773.CrossRefGoogle Scholar
Nesbitt, H.W., Young, G.M., 1989. Formation and diagenesis of weathering profiles. The Journal of Geology 97, 129147.CrossRefGoogle Scholar
Pettijohn, F.J., Potter, P.E., Siever, R., 1972. Sand and Sandstone. Springer-Verlag, New York.Google Scholar
Phartiyal, B., Srivastava, P., Sharma, A., 2009. Tectono-climatic signatures during late Quaternary Period from Upper Spiti Valley, NW Himalaya, India. Himalayan Geology 30(2), 164174.Google Scholar
Potter, P.E., Pettijohn, F.J., 1963. Paleocurrents and Basin Analysis. Academic Press, New York, 330 pp.CrossRefGoogle Scholar
Prasad, S., Anoop, A., Riedel, N., Sarkar, S., Menzel, P., Basavaiah, N., Krishnan, R., et al. , 2014. Prolonged monsoon droughts and links to Indo-Pacific warm pool: A Holocene record from Lonar Lake, central India. Earth and Planetary Science Letters 391, 171182.CrossRefGoogle Scholar
Prasad, V., Phartiyal, B., Sharma, A., 2007. Evidence of enhanced winter precipitation and the prevalence of a cool and dry climate during the mid to late Holocene in mainland Gujarat, India. The Holocene 17, 889896.CrossRefGoogle Scholar
Prescott, J.R., Stephan, L.G., 1982. Contribution of cosmic radiation to the environmental dose for thermoluminescent dating: Latitude, altitude and depth dependences. PACT: Journal of the European Study Group on Physical, Chemical and Mathematical Techniques Applied to Archaeology 6, 1725.Google Scholar
Raj, R., 2007. Late Pleistocene fluvial sedimentary facies, the Dhadhar River basin, Western India. Quaternary International 159, 93101.CrossRefGoogle Scholar
Raj, R., Maurya, D.M., Chamyal, L.S., 1998. Late Quaternary sea level changes in Western India: Evidence from lower Mahi valley. Current Science 74, 910914.Google Scholar
Raj, R., Mulchandani, N., Bhandari, S., Maurya, D.M., Chamyal, L.S., 2003. Evidence of a Mid–Late Holocene seismic event from Dhadhar river basin, Gujarat alluvial plain, western India. Current Science 85, 812815.Google Scholar
Reddy, R.K.T., 1991. Digital analysis of lineaments—a test study on South India. Computers & Geosciences 17, 549559.CrossRefGoogle Scholar
Rudnick, R.L., Gao, S., 2003. Composition of the continental crust. In: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry, Pergamon Press, Oxford, England. pp. 164.Google Scholar
Saini, N.K., Mukherjee, P.K., Rathi, M.S., Khanna, P.P., 2000. Evaluation of energy-dispersive X-ray fluorescence spectrometry in the rapid analysis of silicate rocks using pressed powder pellets. X-ray Spectrometry 29, 166–72.3.0.CO;2-L>CrossRefGoogle Scholar
Sanderson, D., Peacock, D., 2020. Making rose diagrams fit-for-purpose. Earth-Science Reviews 201, 103055. https://doi.org/10.1016/j.earscirev.2019.103055.CrossRefGoogle Scholar
Sangode, S.J., Mazari, R.K., 2007. Mineral magnetic response to climate variability in the high altitude Kioto palaeolake, Spiti Valley, Northwestern Himalaya. Himalayan Geology 28(2), 19.Google Scholar
Schulz, H., von Rad, U., Erlenkeuser, H., 1998. Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years. Nature 393, 5457.CrossRefGoogle Scholar
Schumm, S.A., 1993. River response to baselevel change: implications for sequence stratigraphy. The Journal of Geology 101, 279294.CrossRefGoogle Scholar
Shapiro, L., Brannock, W.W., 1962. Rapid analysis of silicate, carbonate and phosphate rocks. United States Geological Survey Bulletin 1144-A, A1–A56.Google Scholar
Sharma, A., Sensarma, S., Kumar, K., Khanna, P.P., Saini, N. K., 2013. Mineralogy and geochemistry of the Mahi River sediments in tectonically active western India: Implications for Deccan large igneous province source, weathering and mobility of elements in a semi-arid climate. Geochimica et Cosmochimica Acta 104, 6383CrossRefGoogle Scholar
Sheth, H., Melluso, L., 2008. The Mount Pavagadh volcanic suite, Deccan Traps: Geochemical stratigraphy and magmatic evolution. Journal of Asian Earth Sciences 32, 521.CrossRefGoogle Scholar
Singh, I.B., Sharma, S., Sharma, M., Srivastava, P., Rajagopalan, G., 1999. Evidence of human occupation and humid climate of 30 ka in the alluvium of southern Ganga Plain. Current Science 76, 10221026.Google Scholar
Singh, V., Prasad, V., Chakraborty, S., 2007. Phytoliths as indicators of monsoonal variability during mid-late Holocene in mainland Gujarat, western India. Current Science 92, 17541759.Google Scholar
Sridhar, A., Chamyal, L.S., Patel, M., 2014. Palaeoflood record of high-magnitude events during historical time in the Sabarmati River, Gujarat. Current Science 107, 675679.Google Scholar
Srivastava, P., Juyal, N., Singhvi, A.K., Wasson, R.J., Bateman, D., 2001. Luminescence chronology of river adjustment and incision of Quaternary sediments in the alluvial plain of Sabarmati River, north Gujarat, India. Geomorphology 36, 217229.CrossRefGoogle Scholar
Stork, A.L., Smith, D.K., Gill, J.B., 1987. Evaluation of geochemical reference standards by X-ray fluorescence analysis. Geostandards Newsletter 11, 107113.CrossRefGoogle Scholar
Tandon, S.K., Sareen, B.K., Someshwar Rao, M., Singhvi, A.K., 1997. Aggradation history and luminescence chronology of Late Quaternary semi-arid sequence of the Sabarmati basin, Gujarat, Western India. Palaeogeography Palaeoclimatology, Palaeoecology 128, 339357.CrossRefGoogle Scholar
Tanner, C.B., Jackson, M.L., 1948. Nomographs of sedimentation times for soil particles under gravity or centrifugal acceleration. Proceedings of the Soil Science Society of America 12, 6065.CrossRefGoogle Scholar
Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: its Composition and Evolution. Blackwell Scientific, Malden, Massachusetts, 312 pp.Google Scholar
Thokchom, S., Bhattacharya, F., Prasad, A.D., Dogra, N.N., Rastogi, B.K., 2017. Paleoenvironmental implications and drainage adjustment in the middle reaches of the Sabarmati River, Gujarat: implications towards hydrological variability. Quaternary International 454, 114.CrossRefGoogle Scholar
Thompson, L.G., Yao, T., Davis, M.E., Henderson, K.A., Mosley-Thompson, E., Lin, P.N., Beer, J., Synal, H.-A., Cole-Dai, J., Bolzan, J.F., 1997. Tropical climate instability: the Last Glacial Cycle from a Qinghai-Tibetan ice core. Science 276, 18211825.CrossRefGoogle Scholar
Twiss, P.C., Suess, E., Smith, R.M., 1969. Morphological classification of grass phytoliths. Proceedings of the Soil Science Society of America 33, 109115.CrossRefGoogle Scholar
Williamson, D., Jackson, M.J., Banerjee, S.K., Marvin, J., Merdaci, O., Thouveny, N., Decobert, M., Gibert-Massault, E., Massault, M., Mazaudier, D., Taieb, M., 1999. Magnetic signatures of hydrological change in a tropical maar-lake (Lake Massoko, Tanzania): preliminary results. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy 24, 799803.CrossRefGoogle Scholar
Supplementary material: File

Kumar et al. supplementary material

Figures S1-S3 and Tables S1-S4

Download Kumar et al. supplementary material(File)
File 3.3 MB