Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-08T00:35:39.494Z Has data issue: false hasContentIssue false

Reconstruction of sea-surface temperatures in the Canary Islands during Marine Isotope Stage 11

Published online by Cambridge University Press:  20 November 2019

Thibault Clauzel
Affiliation:
Laboratoire de Géologie de Lyon, CNRS UMR 5276, Université Claude Bernard Lyon 1, France
Chloé Maréchal
Affiliation:
Observatoire des Sciences de l'Univers de Lyon, Université Claude Bernard, Lyon 1, France
François Fourel
Affiliation:
Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, CNRS UMR 5023, Université Claude Bernard, Lyon 1, France
Abel Barral
Affiliation:
Laboratoire de Géologie de Lyon, CNRS UMR 5276, Université Claude Bernard Lyon 1, France
Romain Amiot
Affiliation:
Laboratoire de Géologie de Lyon, CNRS UMR 5276, Université Claude Bernard Lyon 1, France
Juan-Francisco Betancort
Affiliation:
Departamento de Biología, Universidad de Las Palmas de Gran Canaria, 35017Las Palmas de Gran Canaria, Canary Islands, Spain
Alejandro Lomoschitz
Affiliation:
Instituto de Oceanografía y Cambio Global, Unidad Asociada de Investigación, desarrollo e innovación al Consejo Superior de Investigaciones Científicas, Universidad de Las Palmas de Gran Canaria, 35017Las Palmas de Gran Canaria, Canary Islands, Spain
Joaquín Meco
Affiliation:
Departamento de Biología, Universidad de Las Palmas de Gran Canaria, 35017Las Palmas de Gran Canaria, Canary Islands, Spain
Christophe Lécuyer*
Affiliation:
Laboratoire de Géologie de Lyon, CNRS UMR 5276, Université Claude Bernard Lyon 1, France
*
*Corresponding author e-mail address: christophe.lecuyer@univ-lyon1.fr (C. Lécuyer).

Abstract

The study of paleoclimates enables us to improve and better constrain climate models in order to forecast future climate variations. Marine Isotope Stage 11 (MIS11), which began around 425,000 yr BP and lasted about 65,000 yr, is a warm isotope stage of paramount importance, because the astronomical configuration was similar to the one characterizing the Holocene. Therefore, this warm isotope stage is the most appropriate analog to present-day climate known to date. This study aims to provide new data on sea-surface temperatures (SSTs) inferred from the carbon and oxygen isotope compositions of skeletal carbonates of marine invertebrates preserved in two marine deposits of the Canary Islands located at Piedra Alta, Lanzarote, and Arucas, Gran Canaria. According to published isotopic fractionation equations the marine deposit from Arucas recorded SSTs of 15.9 ± 2.2°C on average, while the tsunamite from Piedra Alta recorded SSTs of 21.2 ± 1.9°C on average. Absolute dating, mollusc assemblages, and calculated marine temperatures suggest that the Arucas marine deposit corresponds to the beginning of MIS11, while the Piedra Alta tsunamite was formed during MIS11c. These results show that low latitudes also experienced sizable SST changes during interglacial stages.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

§

Also at Institut Universitaire de France, Paris, France.

References

REFERENCES

[AEMET] Agency of Spain and the Institute of Meteorology, 2012. Climate Atlas of the Archipelagos of the Canary Islands, Madeira and the Azores. AEMET, Portugal.Google Scholar
Augustin, L., Barbante, C., Barnes, P.R., Barnola, J.M., Bigler, M., Castellano, E., Cattani, O., Chappellaz, J., Dahl-Jensen, D., Delmonte, B., 2004. Eight glacial cycles from an Antarctic ice core. Nature 429, 623628.Google ScholarPubMed
Benítez, A., 1912. Historia de las Islas Canarias. Benítez, editor, Santa Cruz de Tenerife.Google Scholar
Berger, A., Loutre, M.-F., 2002. An exceptionally long interglacial ahead? Science 297, 12871288.CrossRefGoogle ScholarPubMed
Bintanja, R., Van de Wal, R.S.W., 2008. North American ice-sheet dynamics and the onset of 100,000-year glacial cycles. Nature 454, 869.CrossRefGoogle ScholarPubMed
Bojar, A.-V., Hiden, H., Fenninger, A., Neubauer, F., 2004. Middle Miocene seasonal temperature changes in the Styrian basin, Austria, as recorded by the isotopic composition of pectinid and brachiopod shells. Palaeogeography, Palaeoclimatology, Palaeoecology 203, 95105.CrossRefGoogle Scholar
Borges, R., Hernández-Guerra, A., Nykjaer, L., 2004. Analysis of sea surface temperature time series of the south-eastern North Atlantic. International Journal of Remote Sensing 25, 869891.CrossRefGoogle Scholar
Bowen, D.Q., 2003. Uncertainty in Oxygen Isotope Stage 11 sea-level: an Estimate of 13 ± 2m from Great Britain. American Geophysical Union, Washington, DC 137, 131144.Google Scholar
Candy, I., Schreve, D.C., Sherriff, J., Tye, G.J., 2014. Marine Isotope Stage 11: palaeoclimates, palaeoenvironments and its role as an analogue for the current interglacial. Earth-Science Reviews 128, 1851.CrossRefGoogle Scholar
Carracedo, J.C., Day, S., Guillou, H., Badiola, E.R., Canas, J.A., Torrado, F.P., 1998. Hotspot volcanism close to a passive continental margin: the Canary Islands. Geological Magazine 135, 591604.CrossRefGoogle Scholar
Charette, M.A., Smith, W.H., 2010. The volume of Earth's ocean. Oceanography 23, 112114.CrossRefGoogle Scholar
Chase, MW., 1998. NIST-JANAF Thermochemical Tables 4th ed. Journal of Physical and Chemical Reference Data, 15291564.Google Scholar
Cloern, J.E., Nichols, F.H., 1978. A von Bertalanffy growth model with a seasonally varying coefficient. Journal of the Fisheries Board of Canada 35, 14791482.CrossRefGoogle Scholar
Coplen, T.B., Brand, W.A., Gehre, M., Gröning, M., Meijer, H.A., Toman, B., Verkouteren, R.M., 2006. New guidelines for δ 13C measurements. Analytical Chemistry 78, 24392441.CrossRefGoogle Scholar
Cornu, S., Pätzold, J., Bard, E., Meco, J., Cuerda-Barcelo, J., 1993. Paleotemperature of the last interglacial period based on δ18O of Strombus bubonius from the western Mediterranean Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 103, 120.CrossRefGoogle Scholar
DeCastro, M., Gómez-Gesteira, M., Costoya, X., Santos, F., 2014. Upwelling influence on the number of extreme hot SST days along the Canary upwelling ecosystem. Journal of Geophysical Research: Oceans 119, 30293040.Google Scholar
de Vernal, A., Hillaire-Marcel, C., 2008. Natural variability of Greenland climate, vegetation, and ice volume during the past million years. Science 320, 16221625.CrossRefGoogle ScholarPubMed
Driscoll, E.M., Tinkler, K.J., Hendry, G.L., 1965. The geology and geomorphology of Los Ajaches, Lanzarote. Geological Journal 4, 321334.CrossRefGoogle Scholar
Droxler, A.W., Alley, R.B., Howard, W.R., Poore, R.Z., Burckle, L.H., 2003. Unique and exceptionally long interglacial Marine Isotope Stage 11: window into Earth warm future climate. Earth's Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question, American Geophysical Union, Washington, DC 137, 114.Google Scholar
Elderfield, H., Ferretti, P., Greaves, M., Crowhurst, S., McCave, I.N., Hodell, D.A., Piotrowski, A.M., 2012. Evolution of ocean temperature and ice volume through the mid-Pleistocene climate transition. Science 337, 704709.CrossRefGoogle ScholarPubMed
Epstein, S., Mayeda, T., 1953. Variation of O18 content of waters from natural sources. Geochimica et cosmochimica acta 4, 213224.CrossRefGoogle Scholar
Filliben, J.J., 1975. The probability plot correlation coefficient test for normality. Technometrics 17, 111117.CrossRefGoogle Scholar
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S.C., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., 2013. Evaluation of Climate Models. Cambridge University Press, United Kingdom.Google Scholar
Fourel, F., Martineau, F., Tóth, E.E., Görög, A., Escarguel, G., Lécuyer, C., 2016. Carbon and oxygen isotope variability among foraminifera and ostracod carbonated shells. Annales Universitatis Mariae Curie-Sklodowska, sectio AAA–Physica 70, 133.Google Scholar
Friedman, I., O'Neil, J., Cebula, G., 1982. Two new carbonate stable-isotope standards. Geostandards Newsletter 6, 1112.CrossRefGoogle Scholar
Gillet, P., Biellmann, C., Reynard, B., McMillan, P., 1993. Raman spectroscopic studies of carbonates Part I: High-pressure and high-temperature behaviour of calcite, magnesite, dolomite and aragonite. Physics and Chemistry of Minerals 20, 118.CrossRefGoogle Scholar
Gómez-Letona, M., Ramos, A.G., Coca, J., Arístegui, J., 2017. Trends in primary production in the Canary current upwelling system—a regional perspective comparing remote sensing models. Frontiers in Marine Science 4, 370.CrossRefGoogle Scholar
Grossman, E.L., Ku, T.-L., 1986. Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chemical Geology: Isotope Geoscience Section 59, 5974.CrossRefGoogle Scholar
Hearty, P.J., Kindler, P., Cheng, H., Edwards, R.L., 1999. A + 20 m middle Pleistocene sea-level highstand (Bermuda and the Bahamas) due to partial collapse of Antarctic ice. Geology 27, 375378.2.3.CO;2>CrossRefGoogle Scholar
Helmke, J.P., Bauch, H.A., Röhl, U., Kandiano, E.S., 2008. Uniform climate development between the subtropical and subpolar northeast Atlantic across marine isotope stage 11. Climate of the Past Discussions 4, 433457.CrossRefGoogle Scholar
Ho, S.L., Mollenhauer, G., Lamy, F., Martínez-Garcia, A., Mohtadi, M., Gersonde, R., Hebbeln, D., Nunez-Ricardo, S., Rosell-Melé, A., Tiedemann, R., 2012. Sea surface temperature variability in the Pacific sector of the Southern Ocean over the past 700 kyr. Paleoceanography 27. https://doi.org/10.1029/2012PA002317.CrossRefGoogle Scholar
Horita, J., Ueda, A., Mizukami, K., Takatori, I., 1989. Automatic δD and δ18O analyses of multi-water samples using H2-and CO2-water equilibration methods with a common equilibration set-up. International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes 40, 801805.CrossRefGoogle Scholar
Howard, W.R., 1997. Palaeoclimatology: a warm future in the past. Nature 388, 418.CrossRefGoogle Scholar
Hut, G., 1987. Consultants’ group meeting on stable isotope reference samples for geochemical and hydrological investigations, Report to the Director General of the International Atomic Energy Agency.Google Scholar
[IPCC] Intergovernmental Panel on Climate Change, 2014, Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland.Google Scholar
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., Nouet, J., Barnola, J.-M., Chappellaz, J., 2007. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317, 793796.CrossRefGoogle ScholarPubMed
Kandiano, E.S., Bauch, H.A., Fahl, K., Helmke, J.P., Röhl, U., Pérez-Folgado, M., Cacho, I., 2012. The meridional temperature gradient in the eastern North Atlantic during MIS 11 and its link to the ocean–atmosphere system. Palaeogeography, Palaeoclimatology, Palaeoecology 333–334, 2439.CrossRefGoogle Scholar
Kim, S.-T., Mucci, A., Taylor, B.E., 2007a. Phosphoric acid fractionation factors for calcite and aragonite between 25 and 75 C: revisited. Chemical Geology 246, 135146.CrossRefGoogle Scholar
Kim, S.-T., O'Neil, J.R., Hillaire-Marcel, C., Mucci, A., 2007b. Oxygen isotope fractionation between synthetic aragonite and water: influence of temperature and Mg2+ concentration. Geochimica et Cosmochimica Acta 71, 47044715.CrossRefGoogle Scholar
Land, L.S., 1967. Diagenesis of skeletal carbonates. Journal of Sedimentary Research 37, 914930.Google Scholar
Land, L.S., Lang, J.C., Smith, B.N., 1975. Preliminary observations on the carbon isotopic composition of some reef coral tissues and symbiotic zooxanthellae. Limnology and Oceanography 20, 283287.CrossRefGoogle Scholar
Lawrence, K.T., Herbert, T.D., Brown, C.M., Raymo, M.E., Haywood, A.M., 2009. High-amplitude variations in North Atlantic sea surface temperature during the early Pliocene warm period. Paleoceanography 24.CrossRefGoogle Scholar
Lécuyer, C., Atrops, F., Amiot, R., Angst, D., Daux, V., Flandrois, J.-P., Fourel, F., Rey, K., Royer, A., Seris, M., 2018. Tsunami sedimentary deposits of Crete records climate during the “Minoan Warming Period”(≈ 3350 yr BP). The Holocene 28, 914929.CrossRefGoogle Scholar
Lécuyer, C., Hutzler, A., Amiot, R., Daux, V., Grosheny, D., Otero, O., Martineau, F., Fourel, F., Balter, V., Reynard, B., 2012. Carbon and oxygen isotope fractionations between aragonite and calcite of shells from modern molluscs. Chemical Geology 332, 92101.CrossRefGoogle Scholar
Lécuyer, C., Reynard, B., Martineau, F., 2004. Stable isotope fractionation between mollusc shells and marine waters from Martinique Island. Chemical Geology 213, 293305.CrossRefGoogle Scholar
Leveque, C., 1971. Équation de von Bertalanffy et croissance des mollusques benthiques du Lac Tchad. Cahiers ORSTOM, series Hydrobiologie 5, 263283.Google Scholar
Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20. https://doi.org/10.1029/2004PA001071.Google Scholar
Loutre, M.-F., Berger, A., 2003. Marine Isotope Stage 11 as an analogue for the present interglacial. Global and Planetary Change 36, 209217.CrossRefGoogle Scholar
Maslin, M.A., Swann, G.E., 2006. Isotopes in marine sediments. In: Isotopes in Palaeoenvironmental Research, Springer, Dordrecht, Netherlands, 227290.CrossRefGoogle Scholar
McCarthy, K.T., Pichler, T., Price, R.E., 2005. Geochemistry of Champagne Hot Springs shallow hydrothermal vent field and associated sediments, Dominica, Lesser Antilles. Chemical Geology 224, 5568.CrossRefGoogle Scholar
McConnaughey, T., 1989. 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochimica et Cosmochimica Acta 53, 151162.CrossRefGoogle Scholar
McConnaughey, T.A., 2003. Sub-equilibrium oxygen-18 and carbon-13 levels in biological carbonates: carbonate and kinetic models. Coral Reefs 22, 316327.CrossRefGoogle Scholar
McCrea, J.M., 1950. On the isotopic chemistry of carbonates and a paleotemperature scale. Journal of Chemical Physics 18, 849857.CrossRefGoogle Scholar
McManus, J., Oppo, D., Cullen, J., Healey, S., 2003. Marine isotope stage 11 (MIS 11): analog for Holocene and future Climate? Earth's Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question, American Geophysical Union, Washington, DC 137, 6985.Google Scholar
Meco, J., 2008. Historia Geológica del Clima en Canarias. Libro electrónico ISBN 84-691-5551-6, 296 pp.Google Scholar
Meco, J., Guillou, H., Carracedo, J.-C., Lomoschitz, A., Ramos, A.-J.G., Rodríguez-Yánez, J.-J., 2002. The maximum warmings of the Pleistocene world climate recorded in the Canary Islands. Palaeogeography, Palaeoclimatology, Palaeoecology 185, 197210.CrossRefGoogle Scholar
Meco, J., Lomoschitz, A., Rodríguez, Á., Ramos, A.J., Betancort, J.F., Coca, J., 2018. Mid and Late Holocene sea level variations in the Canary Islands. Palaeogeography, Palaeoclimatology, Palaeoecology 507, 214225.CrossRefGoogle Scholar
Meco, J., Muhs, D.R., Fontugne, M., Ramos, A.J., Lomoschitz, A., Patterson, D., 2011. Late Pliocene and Quaternary Eurasian locust infestations in the Canary archipelago. Lethaia 44, 440454.CrossRefGoogle Scholar
Meco, J., Stearns, C.E., 1981. Emergent littoral deposits in the eastern Canary Islands. Quaternary Research 15, 199208.CrossRefGoogle Scholar
Medina-Elizalde, M., Lea, D.W., 2005. The mid-Pleistocene transition in the tropical Pacific. Science 310, 10091012.CrossRefGoogle ScholarPubMed
Melles, M., Brigham-Grette, J., Minyuk, P.S., Nowaczyk, N.R., Wennrich, V., DeConto, R.M., Anderson, P.M., Andreev, A.A., Coletti, A., Cook, T.L., 2012. 2.8 million years of Arctic climate change from Lake El'gygytgyn, NE Russia. Science 337, 315320.CrossRefGoogle ScholarPubMed
Menéndez, I., Silva, P.G., Martín-Betancor, M., Pérez-Torrado, F.J., Guillou, H., Scaillet, S., 2008. Fluvial dissection, isostatic uplift, and geomorphological evolution of volcanic islands (Gran Canaria, Canary Islands, Spain). Geomorphology 102, 189203.CrossRefGoogle Scholar
Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D., Mountain, G.S., Katz, M.E., Sugarman, P.J., Cramer, B.S., Christie-Blick, N., Pekar, S.F., 2005. The Phanerozoic record of global sea-level change. Science 310, 12931298.CrossRefGoogle ScholarPubMed
Miller, K.G., Mountain, G.S., Wright, J.D., Browning, J.V., 2011. A 180-million-year record of sea level and ice volume variations from continental margin and deep-sea isotopic records. Oceanography 24, 4053.CrossRefGoogle Scholar
Mittelstaedt, E., 1991. The ocean boundary along the northwest African coast: circulation and oceanographic properties at the sea surface. Progress in Oceanography 26, 307355.CrossRefGoogle Scholar
Montesinos, M., Ramos, A.J., Lomoschitz, A., Coca, J., Redondo, A., Betancort, J.F., Meco, J., 2014. Extralimital Senegalese species during Marine Isotope Stages 5.5 and 11 in the Canary Islands (29 N): sea surface temperature estimates. Palaeogeography, Palaeoclimatology, Palaeoecology 410, 153163.CrossRefGoogle Scholar
Muhs, D.R., Meco, J., Simmons, K.R., 2014. Uranium-series ages of corals, sea level history, and palaeozoogeography, Canary Islands, Spain: an exploratory study for two Quaternary interglacial periods. Palaeogeography, Palaeoclimatology, Palaeoecology 394, 99118.CrossRefGoogle Scholar
Muhs, D.R., Pandolfi, J.M., Simmons, K.R., Schumann, R.R., 2012. Sea-level history of past interglacial periods from uranium-series dating of corals, Curaçao, Leeward Antilles islands. Quaternary Research 78, 157169. https://doi.org/10.1016/j.yqres.2012.05.008CrossRefGoogle Scholar
Navarro-Pérez, E., Barton, E.D., 2001. Seasonal and interannual variability of the Canary Current. Scientia Marina 65, 205213.CrossRefGoogle Scholar
Olson, S.L., Hearty, P.J., 2009. A sustained + 21m sea-level highstand during MIS 11 (400ka): direct fossil and sedimentary evidence from Bermuda. Quaternary Science Reviews 28, 271285.CrossRefGoogle Scholar
Oppo, D.W., McManus, J.F., Cullen, J.L., 2006. Evolution and demise of the Last Interglacial warmth in the subpolar North Atlantic. Quaternary Science Reviews, Critical Quaternary Stratigraphy 25, 32683277.CrossRefGoogle Scholar
Pardo, P.C., Padín, X.A., Gilcoto, M., Farina-Busto, L., Pérez, F.F., 2011. Evolution of upwelling systems coupled to the long-term variability in sea surface temperature and Ekman transport. Climate Research 48, 231246.CrossRefGoogle Scholar
Paris, R., Bravo, J.J.C., González, M.E.M., Kelfoun, K., Nauret, F., 2017. Explosive eruption, flank collapse and megatsunami at Tenerife ca. 170 ka. Nature Communications 8, 15246.CrossRefGoogle ScholarPubMed
Paris, R., Ramalho, R.S., Madeira, J., Ávila, S., May, S.M., Rixhon, G., Engel, M., Brückner, H., Herzog, M., Schukraft, G., 2018. Mega-tsunami conglomerates and flank collapses of ocean island volcanoes. Marine Geology 395, 168187.CrossRefGoogle Scholar
Parker, W.G., Yanes, Y., Surge, D., Mesa-Hernández, E., 2017. Calibration of the oxygen isotope ratios of the gastropods Patella candei crenata and Phorcus atratus as high-resolution paleothermometers from the subtropical eastern Atlantic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 487, 251259.CrossRefGoogle Scholar
Past Interglacials Working Group of PAGES, 2016. Interglacials of the last 800,000 years. Reviews of Geophysics 54, 162219.CrossRefGoogle Scholar
Perez-Torrado, F.-J., Cabrera, M.C., Carracedo, J.C., Gimeno Torrente, D., Schneider, J.-L., Paris, R., Wassmer, P., Guillou, H., 2002. Depósitos de tsunami en el valle de Agaete, Gran Canaria (Islas Canarias). Geogaceta 32, 7578.Google Scholar
Prokopenko, A.A., Bezrukova, E.V., Khursevich, G.K., Solotchina, E.P., Kuzmin, M.I., Tarasov, P.E., 2010. Climate in continental interior Asia during the longest interglacial of the past 500 000 years: the new MIS 11 records from Lake Baikal, SE Siberia. Climate of the Past 6, 3148.CrossRefGoogle Scholar
Roberts, D.L., Karkanas, P., Jacobs, Z., Marean, C.W., Roberts, R.G., 2012. Melting ice sheets 400,000 yr ago raised sea level by 13m: Past analogue for future trends. Earth and Planetary Science Letters 357–358, 226237.CrossRefGoogle Scholar
Robinson, A., Alvarez-Solas, J., Calov, R., Ganopolski, A., Montoya, M., 2017. MIS-11 duration key to disappearance of the Greenland ice sheet. Nature Communications 8, 16008.CrossRefGoogle ScholarPubMed
Rohling, E.J., Braun, K., Grant, K., Kucera, M., Roberts, A.P., Siddall, M., Trommer, G., 2010. Comparison between Holocene and Marine Isotope Stage-11 sea-level histories. Earth and Planetary Science Letters 291, 97105.CrossRefGoogle Scholar
Rousseau, D.-D., 2003. The continental record of stage 11: a review. Earth's Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question, American Geophysical Union, Washington, DC 137, 213222.Google Scholar
Saltzman, M.R., Thomas, E., 2012. Carbon isotope stratigraphy. In: The Geologic Time Scale, 1, 207232.CrossRefGoogle Scholar
Shackleton, N., 1967. Oxygen isotope analyses and Pleistocene temperatures re-assessed. Nature 215, 15.CrossRefGoogle Scholar
Stichler, W., 1995. Interlaboratory comparison of new materials for carbon and oxygen isotope ratio measurements. Reference and intercomparison materials for stable isotopes of light elements IAEA TECDOC 825, 6774.Google Scholar
Tzedakis, P.C., 2010. The MIS 11–MIS 1 analogy, southern European vegetation, atmospheric methane and the “early anthropogenic hypothesis.” Climate of the Past 6, 131144.CrossRefGoogle Scholar
Unvros, J., Sharma, S., Mackenzie, F., 1991. Characterization of some biogenic carbonates with Raman spectroscopy. American Mineralogist 76, 641646.Google Scholar
Von Bertalanffy, L., 1957. Quantitative laws in metabolism and growth. Quarterly Review of Biology 32, 217231.CrossRefGoogle Scholar
Wang, T., Surge, D., Mithen, S., 2012. Seasonal temperature variability of the Neoglacial (3300–2500BP) and Roman Warm Period (2500–1600BP) reconstructed from oxygen isotope ratios of limpet shells (Patella vulgata), Northwest Scotland. Palaeogeography, Palaeoclimatology, Palaeoecology 317–318, 104113.CrossRefGoogle Scholar
Wassenaar, L.I., Terzer-Wassmuth, S., Douence, C., Araguas-Araguas, L., Aggarwal, P.K., Coplen, T.B., 2018. Seeking excellence: an evaluation of 235 international laboratories conducting water isotope analyses by isotope-ratio and laser-absorption spectrometry. Rapid Communications in Mass Spectrometry 32, 393406.CrossRefGoogle ScholarPubMed
Watkins, J.M., Hunt, J.D., Ryerson, F.J., DePaolo, D.J., 2014. The influence of temperature, pH, and growth rate on the δ18O composition of inorganically precipitated calcite. Earth and Planetary Science Letters 404, 332343.CrossRefGoogle Scholar
Winter, A., Appeldoorn, R.S., Bruckner, A., Williams, E.H. Jr, Goenaga, C., 1998. Sea surface temperatures and coral reef bleaching off La Parguera, Puerto Rico (northeastern Caribbean Sea). Coral Reefs 17, 377382.CrossRefGoogle Scholar
Zazo, C., Goy, J.L., Hillaire-Marcel, C., Gillot, P.-Y., Soler, V., González, J.Á., Dabrio, C.J., Ghaleb, B., 2002. Raised marine sequences of Lanzarote and Fuerteventura revisited—a reappraisal of relative sea-level changes and vertical movements in the eastern Canary Islands during the Quaternary. Quaternary Science Reviews 21, 20192046.CrossRefGoogle Scholar
Supplementary material: File

Clauzel et al. supplementary material

Clauzel et al. supplementary material 1

Download Clauzel et al. supplementary material(File)
File 18.3 KB
Supplementary material: File

Clauzel et al. supplementary material

Clauzel et al. supplementary material 2

Download Clauzel et al. supplementary material(File)
File 19 KB