Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-21T01:50:50.270Z Has data issue: false hasContentIssue false

Seasonality of C4 plant growth and carbonate precipitation in the Chinese Loess Plateau may cause positive carbon isotope anomalies in pedogenic carbonates

Published online by Cambridge University Press:  12 December 2023

Yang Fu
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China University of Chinese Academy of Sciences, Beijing 100049, China
Zhengtang Guo*
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China University of Chinese Academy of Sciences, Beijing 100049, China CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
Guoan Wang
Affiliation:
Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
*
Corresponding author: Zhengtang Guo; Email: ztguo@mail.iggcas.ac.cn

Abstract

Carbon isotope analysis of pedogenic carbonate (δ13CCarb) and soil organic matter (δ13CTOC) is widely applied in reconstructions of terrestrial paleovegetation. The δ13C of different archives is considered well matched and equally reflects the proportion of C3/C4 plant biomass covering the soil profile. However, modern soil and paleosol sequences provide substantial evidence that δ13CCarb and δ13CTOC do not always match, raising doubts about the accuracy of quantitative C4 plant reconstructions. Here we report paired δ13C records of pedogenic carbonates and organic matter occluded within carbonate nodules from the Shaozhai section in the central Chinese Loess Plateau (CLP). The δ13CCarb record exhibits a positive anomaly and exceeds the theoretical fractionation range with the coexisting δ13CTOC record during the expansion of C4 plants. The possibility of contamination by detrital carbonates and atmospheric CO2 affecting δ13CCarb was ruled out based on the morphological features, mineral fractions, and geochemical composition of carbonate nodules. Our study suggests that the enhanced respiration of C4 plants during pedogenic carbonate precipitation may have caused positive shifts in δ13CCarb records, supporting the hypothesis that the discrepancy in carbon sources explains the δ13CCarb positive anomaly. Thus, the δ13CCarb could reflect the maximum relative abundance of C4 plants during their metabolic peaks.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of Quaternary Research Center

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agrawal, S., Sanyal, P., Sarkar, A., Jaiswal, M.K., Dutta, K., 2012. Variability of Indian monsoonal rainfall over the past 100 ka and its implication for C3–C4 vegetational change. Quaternary Research 77, 159170.CrossRefGoogle Scholar
Amundson, R., Stern, L., Baisden, T., Wang, Y., 1998. The isotopic composition of soil and soil-respired CO2. Geoderma 82, 83114.CrossRefGoogle Scholar
An, Z., Kutzbach, J.E., Prell, W.L., Porter, S.C., 2001. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times. Nature 411, 6266.Google Scholar
An, Z.S., Huang, Y.S., Liu, W.G., Guo, Z.T., Clemens, S., Li, L., et al., 2005. Multiple expansions of C4 plant biomass in East Asia since 7 Ma coupled with strengthened monsoon circulation. Geology 33, 705708.Google Scholar
Barta, G., 2011. Secondary carbonates in loess-paleosoil sequences: a general review. Central European Journal of Geosciences 3, 129146.Google Scholar
Bayat, O., Karimzadeh, H., Eghbal, M.K., Karimi, A., Amundson, R., 2018. Calcic soils as indicators of profound Quaternary climate change in eastern Isfahan, Iran. Geoderma 315, 220230.CrossRefGoogle Scholar
Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker, T.F., Fischer, H., Kipfstuhl, S., Chappellaz, J., 2015. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophysical Research Letters 42, 542549.CrossRefGoogle Scholar
Bond-Lamberty, B., Thomson, A., 2010. A global database of soil respiration data. Biogeosciences 7, 19151926.CrossRefGoogle Scholar
Breecker, D.O., McFadden, L.D., Sharp, Z.D., Martinez, M., Litvak, M.E., 2012. Deep autotrophic soil respiration in shrubland and woodland ecosystems in central New Mexico. Ecosystems 15, 8396.CrossRefGoogle Scholar
Breecker, D.O., Sharp, Z.D., McFadden, L.D., 2009. Seasonal bias in the formation and stable isotopic composition of pedogenic carbonate in modern soils from central New Mexico, USA. GSA Bulletin 121, 630640.CrossRefGoogle Scholar
Cao, J.J., Zhu, C.S., Chow, J.C., Liu, W.G., Han, Y.M., Watson, J.G., 2008. Stable carbon and oxygen isotopic composition of carbonate in fugitive dust in the Chinese Loess Plateau. Atmospheric Environment 42, 91189122.CrossRefGoogle Scholar
Carrapa, B., Clementz, M., Feng, R., 2019. Ecological and hydroclimate responses to strengthening of the Hadley circulation in South America during the Late Miocene cooling. Proceedings of the National Academy of Sciences USA 116, 97479752.CrossRefGoogle ScholarPubMed
Cerling, T.E., 1984. The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth and Planetary Science Letters 71, 229240.CrossRefGoogle Scholar
Cerling, T.E., Harris, J.M., MacFadden, B.J., Leakey, M.G., Quade, J., Eisenmann, V., Ehleringer, J.R., 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153.CrossRefGoogle Scholar
Cerling, T.E., Quade, J., 1993. Stable carbon and oxygen isotopes in soil carbonates. In: Swart, P.K., Lohmann, K.C., Mckenzie, J., Savin, S. (Eds,), Climate Change in Continental Isotopic Records. Geophysical Monograph Series 78. American Geophysical Union, Washington, DC, pp. 217231.Google Scholar
Cerling, T.E., Quade, J., Wang, Y., Bowman, J.R., 1989. Carbon isotopes in soils and palaeosols as ecology and palaeoecology indicators. Nature 341, 138139.CrossRefGoogle Scholar
Chen, J., Li, G.J., 2011. Geochemical studies on the source region of Asian dust. Science China Earth Sciences 54, 1279.CrossRefGoogle Scholar
Cheng, Y., Qiao, Y., Liu, Z., Li, J., Peng, S., Li, C., Qi, L., Wang, Y., 2014. Magnetostratigraphy and chorma records of a red clay formation near Lingtai County of Gansu Province. Quaternary Sciences 34, 391398.Google Scholar
Da, J., Zhang, Y.G., Li, G., Ji, J., 2020. Aridity-driven decoupling of δ13C between pedogenic carbonate and soil organic matter. Geology 48, 981985.CrossRefGoogle Scholar
Da, J., Zhang, Y.G., Wang, H., Balsam, W., Ji, J., 2015. An Early Pleistocene atmospheric CO2 record based on pedogenic carbonate from the Chinese loess deposits. Earth and Planetary Science Letters 426, 6975.CrossRefGoogle Scholar
Davidson, G.R., 1995. The stable isotopic composition and measurement of carbon in soil CO2. Geochimica et Cosmochimica Acta 59, 24852489.CrossRefGoogle Scholar
Ding, Z.L., Yang, S.L., 2000. C3/C4 vegetation evolution over the last 7.0 Myr in the Chinese Loess Plateau: evidence from pedogenic carbonate δ13C. Palaeogeography, Palaeoclimatology, Palaeoecology 160, 291299.CrossRefGoogle Scholar
Edwards, E.J., Osborne, C.P., Strömberg, C.A.E., Smith, S.A., 2010. The origins of C4 grasslands: integrating evolutionary and ecosystem. Science 328, 587.CrossRefGoogle ScholarPubMed
Ehleringer, J.R., Monson, R.K., 1993. Evolutionary and ecological aspects of photosynthetic pathway variation. Annual Review of Ecology and Systematics 24, 411439.CrossRefGoogle Scholar
Ehleringer, J.R., Sage, R.F., Flanagan, L.B., Pearcy, R.W., 1991. Climate change and the evolution of C4 photosynthesis. Trends in Ecology & Evolution 6, 9599.CrossRefGoogle Scholar
Farquhar, G., O'Leary, M., Berry, J., 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Journal of Functional Plant Biology 9, 121137.CrossRefGoogle Scholar
Farquhar, G.D., Ehleringer, J.R., Hubick, K.T., 1989. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40, 503537.CrossRefGoogle Scholar
Feng, Z.D., Wang, H.B., 2005. Pedostratigraphy and carbonate accumulation in the last interglacial pedocomplex of the Chinese Loess Plateau. Soil Science Society of America Journal 69, 10941101.CrossRefGoogle Scholar
Fischer-Femal, B.J., Bowen, G.J., 2021. Coupled carbon and oxygen isotope model for pedogenic carbonates. Geochimica et Cosmochimica Acta 294, 126144.CrossRefGoogle Scholar
Ghosh, S., Sanyal, P., Sangode, S.J., Nanda, A.C., 2018. Substrate control of C4 plant abundance in the Himalayan foreland: a study based on inter-basinal records from Plio-Pleistocene Siwalik Group sediments. Palaeogeography, Palaeoclimatology, Palaeoecology 511, 341351.CrossRefGoogle Scholar
Guo, Z., Peng, S., Hao, Q., Biscaye, P.E., An, Z., Liu, T., 2004. Late Miocene–Pliocene development of Asian aridification as recorded in the Red-Earth Formation in northern China. Global and Planetary Change 41, 135145.CrossRefGoogle Scholar
Hanson, P.J., Edwards, N.T., Garten, C.T., Andrews, J.A., 2000. Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48, 115146.CrossRefGoogle Scholar
Hao, Q., Oldfield, F., Bloemendal, J., Guo, Z., 2008. The magnetic properties of loess and paleosol samples from the Chinese Loess Plateau spanning the last 22 million years. Palaeogeography, Palaeoclimatology, Palaeoecology 260, 389404.CrossRefGoogle Scholar
Hao, Q., Oldfield, F., Bloemendal, J., Torrent, J., Guo, Z., 2009. The record of changing hematite and goethite accumulation over the past 22 Myr on the Chinese Loess Plateau from magnetic measurements and diffuse reflectance spectroscopy. Journal of Geophysical Research: Solid Earth 114. https://doi.org/10.1029/2009JB006604.CrossRefGoogle Scholar
Hatch, M.D., Slack, CR, 1970. Photosynthetic CO2-fixation pathways. Annual Review of Plant Physiology 21, 141162.CrossRefGoogle Scholar
Horton, T.W., Defliese, W.F., Tripati, A.K., Oze, C., 2016. Evaporation induced 18O and 13C enrichment in lake systems: a global perspective on hydrologic balance effects. Quaternary Science Reviews 131, 365379.CrossRefGoogle Scholar
Huth, T.E., Cerling, T.E., Marchetti, D.W., Bowling, D.R., Ellwein, A.L., Passey, B.H., 2019. Seasonal bias in soil carbonate formation and its implications for interpreting high-resolution paleoarchives: evidence from southern Utah. Journal of Geophysical Research: Biogeosciences 124, 616632.CrossRefGoogle Scholar
[IAEA/WMO] International Atomic Energy Agency/World Meteorological Organization, 2006. Global Network of Isotopes in Precipitation. GNIP Database. https://nucleus.iaea.org/wiser.Google Scholar
Jiang, H., Ding, Z., 2005. Temporal and spatial changes of vegetation cover on the Chinese Loess Plateau through the last glacial cycle: evidence from spore-pollen records. Review of Palaeobotany and Palynology 133, 2337.CrossRefGoogle Scholar
Jiang, W., Cheng, Y., Yang, X., Yang, S., 2013. Chinese Loess Plateau vegetation since the Last Glacial Maximum and its implications for vegetation restoration. Journal of Applied Ecology 50, 440448.CrossRefGoogle Scholar
Jiang, W., Han, J., Liu, T.S., 2001. Aridification and its influence on carbon isotope composition of pedogenic carbonate. Quaternary Sciences 21, 427435.Google Scholar
Jiang, W., Wu, H., Li, Q., Lin, Y., Yu, Y., 2019. Spatiotemporal changes in C4 plant abundance in China since the Last Glacial Maximum and their driving factors. Palaeogeography, Palaeoclimatology, Palaeoecology 518, 1021.CrossRefGoogle Scholar
Kelson, J.R., Huntington, K.W., Breecker, D.O., Burgener, L.K., Gallagher, T.M., Hoke, G.D., Petersen, S.V., 2020. A proxy for all seasons? A synthesis of clumped isotope data from Holocene soil carbonates. Quaternary Science Reviews 234, 106259.CrossRefGoogle Scholar
Kovda, I., Morgun, E., Gongalsky, K., 2014. Stable isotopic composition of carbonate pedofeatures in soils along a transect in the southern part of European Russia. Catena 112, 5664.CrossRefGoogle Scholar
Kukla, G., Heller, F., Liu, X.M., Tong, S.C., Liu, T.S., S., A.Z., 1988. Pleistocene climates in China dated by magnetic susceptibility. Geology 16, 811814.2.3.CO;2>CrossRefGoogle Scholar
Lai, C.-T., Riley, W., Owensby, C., Ham, J., Schauer, A., Ehleringer, J.R., 2006. Seasonal and interannual variations of carbon and oxygen isotopes of respired CO2 in a tallgrass prairie: measurements and modeling results from 3 years with contrasting water availability. Journal of Geophysical Research: Atmospheres 111. https://doi.org/10.1029/2005JD006436.CrossRefGoogle Scholar
Li, G., Chen, J., Chen, Y., 2013. Primary and secondary carbonate in Chinese loess discriminated by trace element composition. Geochimica et Cosmochimica Acta 103, 2635.CrossRefGoogle Scholar
Li, G., Sheng, X., Chen, J., Yang, J., Chen, Y., 2007. Oxygen-isotope record of paleorainwater in authigenic carbonates of Chinese loess-paleosol sequences and its paleoclimatic significance. Palaeogeography, Palaeoclimatology, Palaeoecology 245, 551559.CrossRefGoogle Scholar
Li, T., Li, G., 2014. Incorporation of trace metals into microcodium as novel proxies for paleo-precipitation. Earth and Planetary Science Letters 386, 3440.CrossRefGoogle Scholar
Li, X., Fang, X., Wu, F., Miao, Y., 2011. Pollen evidence from Baode of the northern Loess Plateau of China and strong East Asian summer monsoons during the Early Pliocene. Chinese Science Bulletin 56, 6469.CrossRefGoogle Scholar
Liu, W.G., Huang, Y.S., An, Z.S., Clemens, S.C., Li, L., Prell, W.L., Ning, Y.F., 2005. Summer monsoon intensity controls C4/C3 plant abundance during the last 35 ka in the Chinese Loess Plateau: carbon isotope evidence from bulk organic matter and individual leaf waxes. Palaeogeography, Palaeoclimatology, Palaeoecology 220, 243254.CrossRefGoogle Scholar
Liu, W.G., Yang, H., Sun, Y.B., Wang, X.L., 2011. δ13C Values of loess total carbonate: a sensitive proxy for Asian summer monsoon in arid northwestern margin of the Chinese loess plateau. Chemical Geology 284, 317322.CrossRefGoogle Scholar
Luo, X., Wang, H., An, Z., Zhang, Z., Liu, W., 2020. Carbon and oxygen isotopes of calcified root cells, carbonate nodules and total inorganic carbon in the Chinese loess–paleosol sequence: the application of paleoenvironmental studies. Journal of Asian Earth Sciences 201, 104515.CrossRefGoogle Scholar
Lv, Y., Chunxia, Z., Fu, Y., Wu, H., Hao, Q., Qiao, Y., Guo, Z., 2022. Clay mineralogical and geochemical record from a loess-paleosol sequence in Chinese Loess Plateau during the past 880 ka and the implication on the East Asian Summer Monsoon. Quaternary Sciences 42, 921938.Google Scholar
Ma, Y., Wu, F., Fang, X., Li, J., An, Z., Wang, W., 2005. Pollen record from red clay sequence in the central Loess Plateau between 8.10 and 2.60 Ma. Chinese Science Bulletin 50, 22342243.CrossRefGoogle Scholar
Maeda, H.A., Fernie, A.R., 2021. Evolutionary History of Plant Metabolism. Annual Review of Plant Biology 72, 185216.CrossRefGoogle ScholarPubMed
Meng, X., Liu, L., Balsam, W., Li, S., He, T., Chen, J., Ji, J., 2015. Dolomite abundance in Chinese loess deposits: a new proxy of monsoon precipitation intensity. Geophysical Research Letters 42, 10391310398.CrossRefGoogle Scholar
Meng, X., Liu, L., Zhao, W., He, T., Chen, J., Ji, J., 2019. Distant Taklimakan Desert as an important source of aeolian deposits on the Chinese Loess Plateau as evidenced by carbonate minerals. Geophysical Research Letters 46, 48544862.CrossRefGoogle Scholar
Monger, H.C., Cole, D.R., Buck, B.J., Gallegos, R.A., 2009. Scale and the isotopic record of C4 plants in pedogenic carbonate: from the biome to the rhizosphere. Ecology 90, 14981511.CrossRefGoogle ScholarPubMed
Montañez, I.P., 2013. Modern soil system constraints on reconstructing deep-time atmospheric CO2. Geochimica et Cosmochimica Acta 101, 5775.CrossRefGoogle Scholar
Munroe, S.E.M., McInerney, F.A., Guerin, G.R., Andrae, J.W., Welti, N., Caddy-Retalic, S., Atkins, R., Sparrow, B., 2022. Plant families exhibit unique geographic trends in C4 richness and cover in Australia. PLoS ONE 17, e0271603.CrossRefGoogle ScholarPubMed
Myers, T.S., Tabor, N.J., Jacobs, L.L., Bussert, R.J.J.o.S.R., 2016. Effects of different organic-matter sources on estimates of atmospheric and soil pCO2 using pedogenic carbonate. Journal of Sedimentary Research 86, 800812.CrossRefGoogle Scholar
Nie, J., King, J.W., Fang, X., 2007. Enhancement mechanisms of magnetic susceptibility in the Chinese red-clay sequence. Geophysical Research Letters 34. https://doi.org/10.1029/2007GL031430.CrossRefGoogle Scholar
O'Leary, M.H., 1981. Carbon isotope fractionation in plants. Phytochemistry 20, 553567.CrossRefGoogle Scholar
Pearcy, R.W., Ehleringer, J., 1984. Comparative ecophysiology of C3 and C4 plants. Plant, Cell & Environment 7, 113.CrossRefGoogle Scholar
Peters, N.A., Huntington, K.W., Hoke, G.D., 2013. Hot or not? Impact of seasonally variable soil carbonate formation on paleotemperature and O-isotope records from clumped isotope thermometry. Earth and Planetary Science Letters 361, 208218.CrossRefGoogle Scholar
Qi, L., Qiao, Y., Liu, Z., Wang, Y., Peng, S., 2021. Geochemical characteristics of the Tertiary and Quaternary eolian deposits in eastern Gansu Province: implications for provenance and weathering intensity. Journal of Geomechanics 27, 475.Google Scholar
Quade, J., Rech, J.A., Latorre, C., Betancourt, J.L., Gleeson, E., Kalin, M.T.K., 2007. Soils at the hyperarid margin: the isotopic composition of soil carbonate from the Atacama Desert, northern Chile. Geochimica et Cosmochimica Acta 71, 37723795.CrossRefGoogle Scholar
Rae, J.W.B., Zhang, Y.G., Liu, X., Foster, G.L., Stoll, H.M., Whiteford, R.D.M., 2021. Atmospheric CO2 over the past 66 million years from marine archives. Annual Review of Earth and Planetary Sciences 49, 609641.CrossRefGoogle Scholar
Rao, Z., Chen, F., Zhang, X., Xu, Y., Xue, Q., Zhang, P., 2012b. Spatial and temporal variations of C3/C4 relative abundance in global terrestrial ecosystem since the Last Glacial and its possible driving mechanisms. Chinese Science Bulletin 57, 40244035.CrossRefGoogle Scholar
Rao, Z., Zhu, Z., Chen, F., Zhang, J., 2006. Does δ13CCarb of the Chinese loess indicate past C3/C4 abundance? A review of research on stable carbon isotopes of the Chinese loess. Quaternary Science Reviews 25, 22512257.CrossRefGoogle Scholar
Rao, Z.G., Guo, W.K., Cao, J.T., Shi, F.X., Jiang, H., Li, CZ, 2017. Relationship between the stable carbon isotopic composition of modern plants and surface soils and climate: a global review. Earth-Science Reviews 165, 110119.CrossRefGoogle Scholar
Rao, Z.G., Zhang, X., Xue, Q., Xu, Y., Liu, X., 2012a. Primary organic carbon isotopic study result of Xifeng loess/red clay profile. Quaternary Sciences 32, 825827.Google Scholar
Retallack, G.J., 2005. Pedogenic carbonate proxies for amount and seasonality of precipitation in paleosols. Geology 33, 333336.CrossRefGoogle Scholar
Retallack, G.J., 2009. Refining a pedogenic-carbonate CO2 paleobarometer to quantify a middle Miocene greenhouse spike. Palaeogeography, Palaeoclimatology, Palaeoecology 281, 5765.CrossRefGoogle Scholar
Romanek, C.S., Grossman, E.L., Morse, J.W., 1992. Carbon isotopic fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate. Geochimica et Cosmochimica Acta 56, 419430.CrossRefGoogle Scholar
Sage, R.F., Sage, T.L., Kocacinar, F., 2012. Photorespiration and the evolution of C4 photosynthesis. Annual Review of Plant Biology 63, 1947.CrossRefGoogle ScholarPubMed
Sanyal, P., Sarkar, A., Bhattacharya, S.K., Kumar, R., Ghosh, S.K., Agrawal, S., 2010. Intensification of monsoon, microclimate and asynchronous C4 appearance: isotopic evidence from the Indian Siwalik sediments. Palaeogeography, Palaeoclimatology, Palaeoecology 296, 165173.CrossRefGoogle Scholar
Sarangi, V., Agrawal, S., Sanyal, P., 2021. The disparity in the abundance of C4 plants estimated using the carbon isotopic composition of paleosol components. Palaeogeography, Palaeoclimatology, Palaeoecology 561, 110068.CrossRefGoogle Scholar
Schmitt, J., Schneider, R., Elsig, J., Leuenberger, D., Lourantou, A., Chappellaz, J., Köhler, P., et al., 2012. Carbon isotope constraints on the deglacial CO2 rise from ice cores. Science 336, 711714.CrossRefGoogle ScholarPubMed
Sheldon, N.D., Tabor, N.J., 2009. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Science Reviews 95, 152.CrossRefGoogle Scholar
Sheng, X.F., Chen, J., Ji, J.F., Chen, T.H., Li, G.J., Teng, H.H., 2008. Morphological characters and multi-element isotopic signatures of carbonates from Chinese loess–paleosol sequences. Geochimica et Cosmochimica Acta 72, 43234337.CrossRefGoogle Scholar
Shimoda, S., Murayama, S., Mo, W., Oikawa, T., 2009. Seasonal contribution of C3 and C4 species to ecosystem respiration and photosynthesis estimated from isotopic measurements of atmospheric CO2 at a grassland in Japan. Agricultural and Forest Meteorology 149, 603613.CrossRefGoogle Scholar
Shu, P., Wang, H., Zhou, W., Ao, H., Niu, D., Wen, X., Li, B., 2021. Seasonal rainfall patterns in stable carbon isotopes in the Mu Us Desert, northern China during the early and middle Holocene. Climate Dynamics 56, 799812.CrossRefGoogle Scholar
Sinha, R., Tandon, S.K., Sanyal, P., Gibling, M.R., Stuben, D., Berner, Z., Ghazanfari, P., 2006. Calcretes from a Late Quaternary interfluve in the Ganga Plains, India: carbonate types and isotopic systems in a monsoonal setting. Palaeogeography, Palaeoclimatology, Palaeoecology 242, 214239.CrossRefGoogle Scholar
Stevenson, B.A., Kelly, E.F., McDonald, E.V., Busacca, A.J., 2005. The stable carbon isotope composition of soil organic carbon and pedogenic carbonates along a bioclimatic gradient in the Palouse region, Washington State, USA. Geoderma 124, 3747.CrossRefGoogle Scholar
Suarez, M.B., Passey, B.H., Kaakinen, A., 2011. Paleosol carbonate multiple isotopologue signature of active East Asian summer monsoons during the late Miocene and Pliocene. Geology 39, 11511154.CrossRefGoogle Scholar
Sun, J.M., , T.Y., Zhang, Z.Q., Wang, X., Liu, W.G., 2012. Stepwise expansions of C4 biomass and enhanced seasonal precipitation and regional aridity during the Quaternary on the southern Chinese Loess Plateau. Quaternary Science Reviews 34, 5765.CrossRefGoogle Scholar
Sun, Y., An, Z., Clemens, S.C., Bloemendal, J., Vandenberghe, J., 2010. Seven million years of wind and precipitation variability on the Chinese Loess Plateau. Earth and Planetary Science Letters 297, 525535.CrossRefGoogle Scholar
Sun, Y., Kutzbach, J., An, Z., Clemens, S., Liu, Z., Liu, W., Liu, X., et al., 2015. Astronomical and glacial forcing of East Asian summer monsoon variability. Quaternary Science Reviews 115, 132142.CrossRefGoogle Scholar
Sun, Y., Yin, Q., Crucifix, M., Clemens, S.C., Araya-Melo, P., Liu, W., Qiang, X., et al., 2019. Diverse manifestations of the mid-Pleistocene climate transition. Nature Communications 10, 352.CrossRefGoogle ScholarPubMed
Thomas, B., 1991. Stable carbon isotope ratios of natural materials: I. Sample preparation and mass spectrometric analysis. In: Paul, E., Melillo, J. (Eds.), Carbon Isotope Techniques. Elsevier, Amsterdam, pp. 155172.Google Scholar
Tipple, B.J., Meyers, S.R., Pagani, M., 2010. Carbon isotope ratio of Cenozoic CO2: a comparative evaluation of available geochemical proxies. Paleoceanography 25. https://doi.org/10.1029/2009PA001851.CrossRefGoogle Scholar
Tipple, B.J., Pagani, M., 2007. The early origins of terrestrial C4 photosynthesis. Annual Review of Earth and Planetary Sciences 35, 435461.CrossRefGoogle Scholar
Tribble, J.S., Arvidson, R.S., Lane, M., Mackenzie, F.T., 1995. Crystal chemistry, and thermodynamic and kinetic properties of calcite, dolomite, apatite, and biogenic silica: applications to petrologic problems. Sedimentary Geology 95, 1137.CrossRefGoogle Scholar
Vögeli, N., Najman, Y., van der Beek, P., Huyghe, P., Wynn, P.M., Govin, G., van der Veen, I., Sachse, D., 2017. Lateral variations in vegetation in the Himalaya since the Miocene and implications for climate evolution. Earth and Planetary Science Letters 471, 19.CrossRefGoogle Scholar
Von Fischer, J.C., Tieszen, L.L., Schimel, D.S., 2008. Climate controls on C3 vs. C4 productivity in North American grasslands from carbon isotope composition of soil organic matter. Global Change Biology 14, 11411155.CrossRefGoogle Scholar
Vuille, M., Werner, M., Bradley, R.S., Keimig, F., 2005. Stable isotopes in precipitation in the Asian monsoon region. Journal of Geophysical Research: Atmospheres 110. https://doi.org/10.1029/2005JD006022.CrossRefGoogle Scholar
Wang, G., Feng, X., Han, J., Zhou, L., Tan, W., Su, F., 2008. Paleovegetation reconstruction using δ13C of soil organic matter. Biogeosciences 5, 13251337.CrossRefGoogle Scholar
Wang, H., Ambrose, S.H., Fouke, B.W., 2004. Evidence of long-term seasonal climate forcing in rhizolith isotopes during the last glaciation. Geophysical Research Letters 31. https://doi.org/10.1029/2004GL020207.CrossRefGoogle Scholar
Wang, H., Follmer, L.R., 1998. Proxy of monsoon seasonality in carbon isotopes from paleosols of the southern Chinese Loess Plateau. Geology 26, 987990.2.3.CO;2>CrossRefGoogle Scholar
Wang, R., Ma, L., 2016. Climate-driven C4 plant distributions in China: divergence in C4 taxa. Scientific Reports 6, 27977.CrossRefGoogle Scholar
Wang, Y.Q., Zhang, X.Y., Arimoto, R., Cao, J.J., Shen, Z.X., 2005. Characteristics of carbonate content and carbon and oxygen isotopic composition of northern China soil and dust aerosol and its application to tracing dust sources. Atmospheric Environment 39, 26312642.CrossRefGoogle Scholar
Yang, S.L., Ding, Z.L., 2008. Advance–retreat history of the East-Asian summer monsoon rainfall belt over northern China during the last two glacial–interglacial cycles. Earth and Planetary Science Letters 274, 499510.CrossRefGoogle Scholar
Yang, S.L., Ding, Z.L., Li, Y.Y., Wang, X., Jiang, W.Y., Huang, X.F., 2015. Warming-induced northwestward migration of the East Asian monsoon rain belt from the Last Glacial Maximum to the mid-Holocene. Proceedings of the National Academy of Sciences USA 112, 1317813183.CrossRefGoogle Scholar
Yang, S.L., Ding, Z.L., Wang, X., Tang, Z.H., Gu, Z.Y., 2012. Negative δ18O–δ13C relationship of pedogenic carbonate from northern China indicates a strong response of C3/C4 biomass to the seasonality of Asian monsoon precipitation. Palaeogeography, Palaeoclimatology, Palaeoecology 317–318, 3240.CrossRefGoogle Scholar
Zamanian, K., Pustovoytov, K., Kuzyakov, Y., 2016. Pedogenic carbonates: forms and formation processes. Earth-Science Reviews 157, 117.CrossRefGoogle Scholar
Zhang, H., Lu, H., He, J., Xie, W., Wang, H., Zhang, H., Breecker, D., et al., 2022. Large-number detrital zircon U-Pb ages reveal global cooling caused the formation of the Chinese Loess Plateau during Late Miocene. Science Advances 8, eabq2007.CrossRefGoogle ScholarPubMed
Zhang, P., Liu, W., 2013. Carbon isotope composition and paleoenvironment information of rhizolith in Xifeng and Luochuan loess. Quaternary Sciences 33, 179186.Google Scholar
Zhang, P., Liu, W.G., Qiang, X.K., 2013a. Vegetation coverage and monsoon variation recorded by stable carbon isotope of loes since 2.5Ma. Marine Geology & Quaternary Geology 33, 137143.CrossRefGoogle Scholar
Zhang, Z., Li, G., Yan, H., An, Z., 2018. Microcodium in Chinese loess as a recorder for the oxygen isotopic composition of monsoonal rainwater. Quaternary International 464, 364369.CrossRefGoogle Scholar
Zhou, B., Shen, C.D., Sun, W.D., Bird, M., Ma, W.T., Taylor, D., Liu, W.G., Peterse, F., Yi, W.X., Zheng, H.B., 2014. Late Pliocene–Pleistocene expansion of C4 vegetation in semi-arid East Asia linked to increased burning. Geology 42, 10671070.CrossRefGoogle Scholar
Zhou, L.P., Oldfield, F., Wintle, A.G., Robinson, S.G., Wang, J.T., 1990. Partly pedogenic origin of magnetic variations in Chinese loess. Nature 346, 737739.CrossRefGoogle Scholar
Supplementary material: File

Fu et al. supplementary material 1
Download undefined(File)
File 3.5 MB
Supplementary material: File

Fu et al. supplementary material 2
Download undefined(File)
File 98 KB