Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-02T21:33:40.129Z Has data issue: false hasContentIssue false

A speleothem record of seasonality and moisture transport around the 8.2 ka event in Central Europe (Vacska Cave, Hungary)

Published online by Cambridge University Press:  28 July 2023

Attila Demény*
Affiliation:
Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest, H-1112 Hungary Research Centre for Astronomy and Earth Sciences, MTA Centre of Excellence, Budapest, Konkoly Thege Miklós út 15–17., H-1121 Hungary
György Czuppon
Affiliation:
Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest, H-1112 Hungary Research Centre for Astronomy and Earth Sciences, MTA Centre of Excellence, Budapest, Konkoly Thege Miklós út 15–17., H-1121 Hungary
Zoltán Kern
Affiliation:
Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest, H-1112 Hungary Research Centre for Astronomy and Earth Sciences, MTA Centre of Excellence, Budapest, Konkoly Thege Miklós út 15–17., H-1121 Hungary
István Gábor Hatvani
Affiliation:
Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest, H-1112 Hungary Research Centre for Astronomy and Earth Sciences, MTA Centre of Excellence, Budapest, Konkoly Thege Miklós út 15–17., H-1121 Hungary
Dániel Topál
Affiliation:
Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest, H-1112 Hungary Research Centre for Astronomy and Earth Sciences, MTA Centre of Excellence, Budapest, Konkoly Thege Miklós út 15–17., H-1121 Hungary
Máté Karlik
Affiliation:
Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest, H-1112 Hungary Research Centre for Astronomy and Earth Sciences, MTA Centre of Excellence, Budapest, Konkoly Thege Miklós út 15–17., H-1121 Hungary
Gergely Surányi
Affiliation:
Wigner Research Centre for Physics, ELKH, Budapest, Konkoly-Thege Miklós út 29-33., H-1121 Hungary
Mihály Molnár
Affiliation:
Institute for Nuclear Research, ELKH, Debrecen, Bem square 18/c, H-4026 Hungary
Gabriella Ilona Kiss
Affiliation:
Institute for Nuclear Research, ELKH, Debrecen, Bem square 18/c, H-4026 Hungary High-Precision Mass Spectrometry and Environment Change Laboratory (HISPEC), University of Debrecen, Doctoral School of Physics, 4032 Debrecen, Egyetem tér, 4032 Hungary
Máté Szabó
Affiliation:
Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest, H-1112 Hungary Research Centre for Astronomy and Earth Sciences, MTA Centre of Excellence, Budapest, Konkoly Thege Miklós út 15–17., H-1121 Hungary
Chuan-Chou Shen
Affiliation:
Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan, ROC
Hsun-Ming Hu
Affiliation:
Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan, ROC
Zoltán May
Affiliation:
Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, ELKH, Magyar tudósok körútja 2, Budapest, H-1117 Hungary
*
*Corresponding author email address: demeny@geochem.hu

Abstract

A stalagmite was collected in northern Hungary from the Vacska Cave, where monitoring and ventilation-based site selection had been conducted. The stalagmite covers the 10–8 ka (relative to AD 1950) period, including the so-called 8.2 ka event, and showed preceding signs of climate change that were evaluated by petrographic observations, 14C activities, Sr concentrations, and stable isotope compositions of calcite and inclusion-hosted water. Comparisons of speleothem records show that isotope peaks at ca. 8.5 ka are related to a regional climate anomaly, rather than to a continental-scale event. In accordance with regional proxy records, the 8.2 ka event was associated with a series of temperature and precipitation amount changes, starting with cooling and a reduction in the winter-to-summer precipitation ratio, and then becoming a humid and warm phase at 8.15 ka. X-ray diffraction-based crystallinity parameter (FWHM) values provided evidence for diagenetic alteration of the stable oxygen isotope compositions of inclusion waters. Nevertheless, the stable hydrogen isotope compositions of inclusion waters and the oxygen isotope values of the host calcite revealed elevated d-excess values, and therefore increased Mediterranean moisture contribution during the 8.2 ka event, which indirectly indicate the southward displacement of moisture transport from the Atlantic Ocean.

Type
Thematic Set: Speleothem Paleoclimate
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Affolter, S. Häuselmann, A., Fleitmann, D., Edwards, R. L., Cheng, H., Leuenberger, M., 2019. Central Europe temperature constrained by speleothem fluid inclusion water isotopes over the past 14,000 years. Science Advances 5, eaav3809. https://doi.org/10.1126/sciadv.aav3809.CrossRefGoogle ScholarPubMed
Ait Brahim, Y., Wassenburg, J.A., Sha, L., Cruz, F.W., Deininger, M., Sifeddine, A., Bouchaou, L., Spötl, C., Edwards, R.L., Cheng, H., 2019. North Atlantic ice-rafting, ocean and atmospheric circulation during the Holocene: insights from Western Mediterranean speleothems. Geophysical Research Letters 46, 76147623.CrossRefGoogle Scholar
Allan, M., Fagel, N., van der Lubbe, H.J.L., Vonhof, H.B., Cheng, H., Edwards, R.L., Verheyden, S., 2018. High-resolution reconstruction of 8.2 ka event documented in Père Noël cave, southern Belgium. Journal of Quaternary Science 33, 840852.Google Scholar
Alley, R.B., Mayewski, P.A., Sowers, T., Stuiver, M., Taylor, K.C., Clark, P.U., 1997. Holocene climatic instability: a prominent, widespread event 8200 yr ago. Geology 25, 483486.Google Scholar
Atsawawaranunt, K., Comas-Bru, L., Amirnezhad Mozhdehi, S., Deininger, M., Harrison, S. P., Baker, A., Boyd, M., et al., 2018. The SISAL database: a global resource to document oxygen and carbon isotope records from speleothems. Earth System Science Data 10, 16871713.Google Scholar
Baker, J.L., Lachniet, M.S., Chervyatsova, O., Asmerom, Y., Polyak, V.J., 2017. Holocene warming in western continental Eurasia driven by glacial retreat and greenhouse forcing. Nature Geoscience 10, 430435.Google Scholar
Barber, D.C., Dyke, A., Hillaire-Marcel, C., Jennings, A.E., Andrews, J.T., Kerwin, M.W., Bilodeau, G., et al., 1999. Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature 400, 344348.Google Scholar
Benson, A., Hoffmann, D.L., Daura, J., Sanz, M., Rodrigues, F., Souto, P., Zilhão, J., 2021. A speleothem record from Portugal reveals phases of increased winter precipitation in western Iberia during the Holocene. The Holocene 31, 13391350.Google Scholar
Boch, R., Spötl, C., Kramers, J., 2009. High-resolution isotope records of early Holocene rapid climate change from two coeval stalagmites of Katerloch Cave, Austria. Quaternary Science Reviews 28, 25272538.Google Scholar
Borsato, A., Johnston, V.E., Frisia, S., Miorandi, R., Corradini, F., 2016. Temperature and altitudinal influence on karst dripwater chemistry: implications for regional-scale palaeoclimate reconstructions from speleothems. Geochimica et Cosmochimica Acta 177, 275297.CrossRefGoogle Scholar
Breitenbach, S.F.M., Plessen, B., Waltgenbach, S., Tjallingii, R., Leonhardt, J., Jochum, K.P., Meyer, H., Goswami, B., Marwan, N., Scholz, D., 2019. Holocene interaction of maritime and continental climate in Central Europe: new speleothem evidence from central Germany. Global and Planetary Change 176, 144161.Google Scholar
Bronk Ramsey, C., 2001. Development of the radiocarbon calibration program OxCal. Radiocarbon 43, 355363.Google Scholar
Bronk Ramsey, C., 2008. Deposition models for chronological records. Quaternary Science Reviews 27, 4260.Google Scholar
Brouard, E., Roy, M., Godbout, P.-M., Veillette, J.J., 2021. A framework for the timing of the final meltwater outbursts from glacial Lake Agassiz-Ojibway. Quaternary Science Reviews 274, 107269. https://doi.org/10.1016/j.quascirev.2021.107269.Google Scholar
Cheng, H., Fleitmann, D., Edwards, R.L., Wang, X., Cruz, F.W., Auler, A.S., Mangini, A., et al., 2009. Timing and structure of the 8.2 kyr B.P. event inferred from δ18O records of stalagmites from China, Oman, and Brazil. Geology 37, 10071010.Google Scholar
Cheng, H., Sinha, A., Verheyden, S., Nader, F.H., Li, X.L., Zhang, P.Z., Yin, J.J., et al., 2015. The climate variability in northern Levant over the past 20,000 years, Geophysical Research Letters 42, 86418650.CrossRefGoogle Scholar
Czuppon, Gy., Demény, A., Leél-Őssy, Sz., Óvari, M., Molnár, M., Stieber, J., Kiss, K., Kármán, K., Surányi, G., Haszpra, L., 2018. Cave monitoring in the Béke and Baradla caves (northeastern Hungary): implications for the conditions for the formation cave carbonates. International Journal of Speleology 47, 1328.CrossRefGoogle Scholar
Czuppon, Gy., Demény, A., Leél-Őssy, Sz., Stieber, J., Óvári, M., Dobosy, P., Berentés, Á., Kovács, R., 2022a. Cave monitoring in Hungary: an overview. Central European Geology 65, 2639.Google Scholar
Czuppon, Gy., Demény, A., Leél-Őssy, Sz., Stieber, J., Óvári, M., Dobosy, P., Berentés, Á., Kovács, R., 2022b. Monitoring and geochemical investigations of caves in Hungary: Implications for climatological, hydrological, and speleothem formation processes. In: Veress, M., Leél-Őssy, Sz. (Eds), Cave and Karst Systems of Hungary. Springer Nature, Cham, Switzerland, pp. 465486.Google Scholar
Daley, T.J., Thomas, E.R., Holmes, J.A., Street-Perrott, F.A., Chapman, M.R., Tindall, J.C., Valdes, P.J., et al., 2013. The 8200yr cold event in stable isotope records from the North Atlantic region. Global and Planetary Change 79, 288302.Google Scholar
Deák, I., Leél-Őssy, Sz., Kövér, Sz., Surányi, G., 2007. A Csévi-szirtek barlangjai. [Caves of the Csévi-Cliffs]. Karszt és Barlang [Karst and Cave] 2007, 1736. [in Hungarian)]Google Scholar
Demény, A., Berentés, Á., Czuppon, Gy., Kovács, R., Leél-Őssy, Sz., Surányi, G., 2021c. Nyitni vagy nem nyitni? –Pilisi barlangok szellőzöttsége a geokémiai adatok tükrében. [To open or not to open? Ventilation in the Pilis caves in the light of geochemical data]. Földrajzi Közlemények 145, 224231.Google Scholar
Demény, A., Czuppon, Gy., Kern, Z., Leél-Őssy, Sz., Németh, A., Szabó, M., Tóth, M., et al., 2016. Recrystallization-induced oxygen isotope changes in inclusion-hosted water of speleothems—paleoclimatological implications. Quaternary International 415, 2532.Google Scholar
Demény, A., Kern, Z., Czuppon, Gy., Németh, A., Leél-Őssy, Sz., Siklósy, Z., Lin, K., et al., 2017. Stable isotope compositions of speleothems from the last interglacial—spatial patterns of climate fluctuations in Europe. Quaternary Science Reviews 161, 6880.Google Scholar
Demény, A., Kern, Z., Czuppon, Gy., Németh, A., Schöll-Barna, G., Siklósy, Z., Leél-Őssy, Sz., et al., 2019a. Middle Bronze Age humidity and temperature variations, and societal changes in East-Central Europe. Quaternary International 504, 8095.Google Scholar
Demény, A., Kern, Z., Hatvani, I.G., Torma, Cs., Topál, D., Frisia, S., Leél-Őssy, Sz., Czuppon, Gy., Surányi, G., 2021a. Holocene hydrological changes in Europe and the role of the North Atlantic ocean circulation from a speleothem perspective. Quaternary International 571, 110.Google Scholar
Demény, A., Kern, Z., Németh, A., Frisia, S., Hatvani, I.G., Czuppon, Gy., Leél-Őssy, Sz., et al., 2019b. North Atlantic influences on climate conditions in East-Central Europe in the Late Holocene reflected by flowstone compositions. Quaternary International 512, 99112.CrossRefGoogle Scholar
Demény, A., Rinyu, L., Kern, Z., Hatvani, I.G., Czuppon, Gy., Surányi, G., Leél-Őssy, Sz., Shen, Ch.-Ch., Koltai, G., 2021b. Paleotemperature reconstructions using speleothem fluid inclusion analyses from Hungary. Chemical Geology 563, 120051. https://doi.org/10.1016/j.chemgeo.2020.120051.Google Scholar
Demény, A., Topál, D., Surányi, G., Czuppon, Gy., Berentés, Á., Molnár, M., Leél-Őssy, Sz., Kovács, R., 2022. Climate change event at 8.5 ka detected from Oman to the Carpathian Basin: teleconnections with the Indian ocean. Climate Change: The Karst Record IX (KR9), University of Innsbruck, Austria, Abstracts, p. 101.Google Scholar
Domínguez-Villar, D., Wang, X., Krklec, K., Cheng, H., Edwards, R.L., 2017. The control of the tropical North Atlantic on Holocene millennial climate oscillations. Geology 45, 303306.Google Scholar
Dreybrodt, W., Fohlmeister, J., 2022. The impact of outgassing of CO2 and prior calcium precipitation to the isotope composition of calcite precipitated on stalagmites. Implications for reconstructing climate information from proxies. Chemical Geology 589, 120676. https://doi.org/10.1016/j.chemgeo.2021.120676.Google Scholar
Fairchild, I.J., Baker, A., 2012. Speleothem Science. Wiley-Blackwell, Chichester, UK, 450 pp.Google Scholar
Fairchild, I.J., Baker, A., Borsato, A., Frisia, S., Hinton, R.W., McDermott, F., Tooth, A.F., 2001. Annual to sub-annual resolution of multiple trace-element trends in speleothems. Journal of the Geological Society 158, 831841.Google Scholar
Fleitmann, D., Burns, S.J., Mangini, A., Mudelsee, M., Kramers, J., Villa, I., Neff, U., et al., 2007. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quaternary Science Reviews 26, 170188.Google Scholar
Fleitmann, D., Cheng, H., Badertscher, S., Edwards, R. L., Mudelsee, M., Göktürk, O. M., Fankhauser, A., et al., 2009. Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey. Geophysical Research Letters 36, L19707. https://doi.org/10.1029/2009GL040050.Google Scholar
Fohlmeister, J., Schröder-Ritzrau, A., Scholz, D., Spötl, C., Riechelmann, D. F. C., Mudelsee, M., Wackerbarth, A., et al., 2012. Bunker Cave stalagmites: an archive for central European Holocene climate variability. Climate of the Past 8, 17511764.Google Scholar
Fohlmeister, J., Vollweiler, N., Spötl, C., Mangini, A., 2013. COMNISPA II: update of a mid-European isotope climate record, 11 ka to present. The Holocene 23, 749754.Google Scholar
Fórizs, I., Kern, Z., Csicsák, J., Csurgó, G., Földing, G., Máthé, Z., Ország, J., Szreda, G., Vendégh, R., 2020. Monthly data of stable isotopic composition (δ18O, δ2H) and tritium activity in precipitation from 2004 to 2017 in the Mecsek Hills, Hungary. Data in Brief 32, 106206. https://doi.org/10.1016/j.dib.2020.106206.Google Scholar
Frisia, S., Borsato, A., Mangini, A., Spötl, C., Madonia, G., Sauro, U., 2006. Holocene Climate variability in Sicily from a discontinuous stalagmite record and the Mesolithic to Neolithic transition. Quaternary Research 66, 388400. https://doi.org/10.1016/j.yqres.2006.05.003.Google Scholar
Gat, J.R., 1980. The isotopes of hydrogen and oxygen in precipitation. In: Fritz, P., Fontes, G. (Eds.), Handbook of Environmental Isotope Geochemistry. Elsevier, Amsterdam, pp. 2147.Google Scholar
Gat, J.R., Carmi, I., 1987. Effect of climate changes on the precipitation patterns and isotopic composition of water in a climate transition zone: case of the Eastern Mediterranean sea area. In: Solomon, S.I., Beran, M., Hogg, W. (Eds.), The Influence of Climate Change and Climatic Variability on the Hydrologic Regime and Water Resources. Proceedings, of the Vancouver Symposium, IAHS Publication No. 168, pp. 513523.Google Scholar
Gkinis, V., Vinther, B.M., Popp, T.J., Quistgaard, T., Faber, A.K., Holme, C.T., Jensen, C.M., et al., 2021. A 120,000-year long climate record from a NW-Greenland deep ice core at ultra-high resolution. Scientific Data 8, 141. https://doi.org/10.1038/s41597-021-00916-9.CrossRefGoogle ScholarPubMed
Haas, J. (Ed.), 2001. Geology of Hungary. Eötvös Kiadó [Eötvös University Press], Budapest.Google Scholar
Huang, Y., Fairchild, I.J., 2001. Partitioning of Sr2+ and Mg2+ into calcite under karst-analogue experimental conditions. Geochimica et Cosmochimica Acta 65, 4762.Google Scholar
Hua, Q., Barbetti, M., Rakowski, A.Z., 2013. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55, 20592072.Google Scholar
Johnston, V.E., Borsato, A., Spötl, C., Frisia, S., Miorandi, R., 2013. Stable isotopes in caves over altitudinal gradients: fractionation behaviour and inferences for speleothem sensitivity to climate change. Climate of the Past 9, 99118.CrossRefGoogle Scholar
Kern, Z., Demény, A., Persoiu, A., Hatvani, I.G., 2019. Speleothem records from the eastern part of Europe and Turkey—discussion on stable oxygen and carbon isotopes. Quaternary 2, 31. https://doi.org/10.3390/quat2030031.Google Scholar
Kilhavn, H., Couchoud, I., Drysdale, R.N., Rossi, C., Hellstrom, J., Arnaud, F., Wong, H., 2022. The 8.2 ka event in northern Spain: timing, structure and climatic impact from a multi-proxy speleothem record. Climate of the Past 18, 23212344.Google Scholar
Lachniet, M.S., 2009. Climatic and environmental controls on speleothem oxygen-isotope values. Quaternary Science Reviews 28, 412432.Google Scholar
Landis, G.P., 1983. Harding Iceland Spar: a new δ18O–δ13C carbonate standard for hydrothermal minerals. Isotope Geoscience 1, 9194.Google Scholar
Luetscher, M., Hoffmann, D.L., Frisia, S., Spötl, C., 2011. Holocene glacier history from alpine speleothems, Milchbach Cave, Switzerland. Earth and Planetary Science Letters 302, 95106.Google Scholar
Major, I., Haszpra, L., Rinyu, L., Futó, I., Bihari, Á, Hammer, S., Jull, A.J.T., Molnár, M., 2018. Temporal variation of atmospheric fossil and modern CO2 excess at a Central European rural tower station between 2008 and 2014. Radiocarbon 60, 12851299.Google Scholar
McCrea, J.M., 1950. On the isotopic chemistry of carbonates and a paleotemperature scale. The Journal of Chemical Physics 18, 849857.Google Scholar
Mickler, P.J., Banner, J.L., Stern, L., Asmerom, Y., Edwards, R.L., Ito, E., 2004. Stable isotope variations in modern tropical speleothems: evaluating applications to paleoenvironmental reconstructions. Geochimica et Cosmochimica Acta 68, 43814393.Google Scholar
Mickler, P.J., Stern, L.A., Banner, J.L., 2006. Large kinetic isotope effects in modern speleothems. GSA Bulletin 118, 6581.Google Scholar
Molnár, M., Dezső, Z., Futó, I., Rinyu, L., Svingor, É., 2006. Measurement and interpretation of 14C-contents of young karstic rocks. Karst Development (Karsztfejlődés) 11, 3746. [in Hungarian]Google Scholar
Molnár, M., Dezső, Z., Futo, I., Siklósy, Z., Jull, A.J.T., Koltai, G., 2016. Study of radiocarbon dynamics of Baradla Cave, Hungary. Geophysical Research Abstracts 18, EGU2016-15278-1.Google Scholar
Molnár, M., Janovics, R., Major, I., Orsovszki, J., Gönczi, R., Veres, M., Leonard, A.G., et al., 2013a. Status report of the new AMS 14C sample preparation lab of the Hertelendi Laboratory of Environmental Studies, Debrecen, Hungary. Radiocarbon 55, 665676.CrossRefGoogle Scholar
Molnár, M., Rinyu, L., Veres, M., Seiler, M., Wacker, L., Synal, H.-A., 2013b. EnvironMICADAS: a mini 14C AMS with enhanced gas ion source interface in the Hertelendi Laboratory of Environmental Studies (HEKAL), Hungary. Radiocarbon 55, 338344.Google Scholar
Morrill, C., Anderson, D.M., Bauer, B.A., Buckner, R., Gille, E.P., Gross, W.S., Hartman, M., Shah, A., 2013. Proxy benchmarks for intercomparison of 8.2 ka simulations. Climate of the Past 9, 423432.Google Scholar
Neff, U., Burns, S.J., Mangini, A., Mudelsee, M., Fleitmann, D., Matter, A., 2001. Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature 411, 290293.Google Scholar
Noronha, A.L., Johnson, K.R., Hu, C., Ruan, J., Southon, J.R., Ferguson, J.E., 2014. Assessing influences on speleothem dead carbon variability over the Holocene: implications for speleothem-based radiocarbon calibration. Earth and Planetary Science Letters 394, 2029.Google Scholar
Pál, I., Magyari, E.K., Braun, M., Vincze, I., Pálfy, J., Molnár, M., Finsinger, W., Buczkó, K., 2016. Small-scale moisture availability increase during the 8.2 ka climatic event inferred from biotic proxy records in the South Carpathians (SE Romania). The Holocene 26, 13821396.Google Scholar
Parker, S.E., Harrison, S.P., 2022. The timing, duration and magnitude of the 8.2 ka event in global speleothem records. Scientific Reports 12, 10542. https://doi.org/10.1038/s41598-022-14684-y.Google Scholar
Peckover, E.N., Andrews, J.E., Leeder, M.R., Rowe, P.J., Marca, A., Sahy, D., Noble, S., Gawthorpe, R., 2019. Coupled stalagmite—alluvial fan response to the 8.2 ka event and Early Holocene palaeoclimate change in Greece. Palaeogeography, Palaeoclimatology, Palaeoecology 532, 109252. https://doi.org/10.1016/j.palaeo.2019.109252.Google Scholar
Perșoiu, A., Onac, B.P., Wynn, J.G., Blaauw, M., Ionita, M., Hansson, M., 2017. Holocene winter climate variability in Central and Eastern Europe. Scientific Reports 7, 1196. https://doi.org/10.1038/s41598-017-01397-w.Google Scholar
Prasad, S., Witt, A., Kienel, U., Dulski, P., Bauer, E., Yancheva, G., 2009. The 8.2 ka event: evidence for seasonal differences and the rate of climate change in western Europe. Global and Planetary Change 67, 218226.Google Scholar
Railsback, L.B., Akers, P.D., Wang, L., Holdridge, G.A., Voarintsoa, Ny.R., 2013. Layer-bounding surfaces in stalagmites as keys to better paleoclimatological histories and chronologies. International Journal of Speleology 42, 167180.Google Scholar
Reimer, P.J., Austin, W.E.N., Bard, E., Bayliss, A., Blackwell, P.G., Bronk Ramsey, C., Butzin, M., et al., 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal k). Radiocarbon 62, 725757.Google Scholar
Rinyu, L., Molnár, M., Major, I., Nagy, T., Veres, M., Kimák, Á., Wacker, L., Synal, H-A., 2013. Optimization of sealed tube graphitization method for environmental C-14 Studies Using MICADAS. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions With Materials and Atoms 294, 270275.Google Scholar
Rohling, E.J., Pälike, H., 2005. Centennial-scale climate cooling with a sudden cold event around 8,200 years ago. Nature 434, 975979.Google Scholar
Rossi, C., Bajo, P., Lozano, R. P., Hellstrom, J., 2018. Younger Dryas to Early Holocene paleoclimate in Cantabria (N Spain): constraints from speleothem Mg, annual fluorescence banding and stable isotope records. Quaternary Science Reviews 192, 7185.Google Scholar
Scholz, D., Hoffmann, D.L., 2011. StalAge—an algorithm especially designed for construction of speleothem age models. Quaternary Geochronology 6, 369382.Google Scholar
Seppä, H., Birks, H.J.B., Giesecke, T., Hammarlund, D., Alenius, T., Antonsson, K., Bjune, A.E., et al., 2007. Spatial structure of the 8200 cal yr event in northern Europe. Climate of the Past 3, 225236.Google Scholar
Sha, L., Ait Brahim, Y., Wassenburg, J.A., Yin, J., Peros, M., Cruz, F.W., Cai, Y., et al., 2019. How far north did the African Monsoon fringe expand during the African Humid Period? Insights from Southwest Moroccan speleothems. Geophysical Research Letters 46, 1409314102.Google Scholar
Shi, X., Lohmann, G., Sidorenko, D., Yang, H., 2020. Early-Holocene simulations using different forcings and resolutions in AWI-ESM. The Holocene 30, 9961015.Google Scholar
Siklósy, Z., Demény, A., Vennemann, T.W., Pilet, S., Kramers, J., Leél-Őssy, S., Bondár, M., Shen, C.-C., Hegner, E., 2009. Bronze Age volcanic event recorded in stalagmites by combined isotope and trace element studies. Rapid Communication in Mass Spectrometry 23, 801808.Google Scholar
Sinclair, D.J., 2011. Two mathematical models of Mg and Sr partitioning into solution during incongruent calcite dissolution. Implications for dripwater and speleothem studies. Chemical Geology 283, 119133.Google Scholar
Sirocko, F., Martínez-García, A., Mudelsee, M., Albert, J., Britzius, S., Christl, M., Diehl, D., et al., 2021. Muted multidecadal climate variability in central Europe during cold stadial periods. Nature Geoscience 14, 651658.Google Scholar
Steponaitis, E., Andrews, A., McGee, D., Quade, J., Hsieh, Y.T., Broecker, W.S., Shuman, B.N., Burns, S.J., Cheng, H., 2015. Mid-Holocene drying of the U.S. Great Basin recorded in Nevada speleothems. Quaternary Science Reviews 127, 174185.Google Scholar
Tegzes, A.D., Jansen, E., Telford, R.J., 2014. The role of the northward-directed (sub)surface limb of the Atlantic Meridional Overturning Circulation during the 8.2 ka event. Climate of the Past 10, 18871904.Google Scholar
Thomas, E.R., Wolff, E.W., Mulvaney, R., Steffensen, J.P., Johnsen, S.J., Arrowsmith, C., White, J.W.C., Vaughn, B., Popp, T., 2007. The 8.2 ky event from Greenland ice cores. Quaternary Science Reviews 26, 7081.Google Scholar
Tremaine, D.M., Froelich, P.N., Wang, Y., 2011. Speleothem calcite farmed in situ: modern calibration of δ18O and δ13C paleoclimate proxies in a continuously-monitored natural cave system. Geochimica et Cosmochimica Acta 75, 49294950.Google Scholar
Wiersma, A.P., Roche, D.M., Renssen, H., 2011. Fingerprinting the 8.2 ka event climate response in a coupled climate model. Journal of Quaternary Science 26, 118127.Google Scholar
Supplementary material: File

Demény et al. supplementary material 1

Demény et al. supplementary material
Download Demény et al. supplementary material 1(File)
File 52.2 KB
Supplementary material: File

Demény et al. supplementary material 2

Demény et al. supplementary material
Download Demény et al. supplementary material 2(File)
File 931.4 KB