Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-09T06:11:36.493Z Has data issue: false hasContentIssue false

Summer air temperature, reconstructions from the last glacial stage based on rodents from the site Taillis-des-Coteaux (Vienne), Western France

Published online by Cambridge University Press:  20 January 2017

Aurélien Royer
Affiliation:
Laboratoire de Géologie de Lyon, UMR CNRS 5276, Université Lyon 1 and Ecole Normale Supérieure de Lyon, 69622 Villeurbanne, France Laboratoire EPHE PALEVO-Ecole Pratique des Hautes Etudes, 21000 Dijon, France
Christophe Lécuyer*
Affiliation:
Laboratoire de Géologie de Lyon, UMR CNRS 5276, Université Lyon 1 and Ecole Normale Supérieure de Lyon, 69622 Villeurbanne, France Institut Universitaire de France, Paris, France
Sophie Montuire
Affiliation:
Biogéosciences, UMR CNRS 6282, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France Laboratoire EPHE PALEVO-Ecole Pratique des Hautes Etudes, 21000 Dijon, France
Jérôme Primault
Affiliation:
DRAC/SRA Poitou-Charentes, Ministère de la Culture et de la Communication, 102 Grand'Rue BP 553, 86020 Poitiers Cedex, France
François Fourel
Affiliation:
Laboratoire de Géologie de Lyon, UMR CNRS 5276, Université Lyon 1 and Ecole Normale Supérieure de Lyon, 69622 Villeurbanne, France
Marcel Jeannet
Affiliation:
LAMPEA, UMR 6636, MMSH, 5 rue du Château de l'Horloge, BP 647, 13094 Aix-en-Provence cedex 2, France
*
*Corresponding author.

Abstract

The oxygen isotope composition of phosphate from tooth enamel of rodents (δ18Op) constitutes a valuable proxy to reconstruct past air temperatures in continental environments. This method has been applied to rodent dental remains from three genera, Arvicola sp., Microtus sp. and Dicrostonyx sp., coming from Taillis-des-Coteaux, Vienne, France. This archaeological site contains an exceptionally preserved sedimentary sequence spanning almost the whole Upper Palaeolithic, including seven stratigraphic layers dated from 35 to 17 cal ka BP. The abundant presence of rodent remains offers the opportunity to quantify the climatic fluctuations coeval of the various stages of human occupation of the site. Differences between δ18Op values of Arvicola sp. and Microtus sp. teeth are interpreted as the result of heterochrony in tooth formation as well as differences in ecology. Mean δ18Op values of Microtus sp. are preferentially used to reconstruct summer air temperatures, which range from 16.0 ± 3.7 to 19.1 ± 3.1°C throughout the sedimentary sequence; however, the highest variability is observed during the last glacial maximum.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, P. Owls, Caves, and Fossils: Predation, Preservation, and Accumulation of Small Mammal Bones in Caves, with an Analysis of the Pleistocene Cave Faunas from Westbury-sub-Mendip. (1990). University of Chicago Press, Somerset, UK. (239 pp.)Google Scholar
Atkinson, T.C., Briffa, K.R., and Coope, G.R. Seasonal temperatures in Britain during the past 22,000 years, reconstructed using beetle remains. Nature 325, (1987). 587592.CrossRefGoogle Scholar
Ayliffe, L.K., Chivas, A.R., and Leakey, M.G. The retention of primary oxygen isotope compositions of fossil elephant skeletal phosphate. Geochim. Cosmochim. Acta 58, (1994). 52915298.Google Scholar
Bennett, K.D., and Provan, J. What do we mean by ‘refugia’?. Quat. Sci. Rev. 27, (2008). 24492455.Google Scholar
Bernard, A., Daux, V., Lécuyer, C., Brugal, J.-P., Genty, D., Wainer, K., Gardien, V., Fourel, F., and Jaubert, J. Pleistocene seasonal temperature variations recorded in the δ18O of Bison priscus teeth. Earth Planet. Sci. Lett. 283, (2009). 133143.Google Scholar
Birks, H.H., and Ammann, B. Two terrestrial records of rapid climatic change during the glacial–Holocene transition (14,000–9,000 calendar years B.P.) from Europe. Proc. Natl. Acad. Sci. 97, (2000). 13901394.CrossRefGoogle ScholarPubMed
Blake, R.E., O'Neil,, J.R., and Garcia, G.A. Oxygen isotope systematics of biologically mediated reactions of phosphate: I. Microbial degradation of organophosphorus compounds. Geochim. Cosmochim. Acta 61, (1997). 44114422.CrossRefGoogle Scholar
Chenery, C., Müldner, G., Evans, J., Eckardt, H., and Lewis, M. Strontium and stable isotope evidence for diet and mobility in Roman Gloucester, UK. J. Archaeol. Sci. 37, (2010). 150163.CrossRefGoogle Scholar
Colonese, A.C., Zanchetta, G., Perlès, C., Drysdale, R.N., Manganelli, G., Baneschi, I., Dotsika, E., and Valladas, H. Deciphering late Quaternary land snail shell δ18O and δ13C from Franchthi Cave (Argolid, Greece). Quat. Res. 80, (2013). 6675.Google Scholar
Crowson, R.A., Showers, W.J., Wright, E.K., and Hoering, T.C. Preparation of phosphate samples for oxygen isotope analysis. Anal. Chem. 63, (1991). 23972400.Google Scholar
Dansgaard, W. Stable isotopes in precipitation. Tellus 16, (1964). 436468.Google Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjornsdottir, A.E., Jouzel, J., and Bond, G. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, (1993). 218220.Google Scholar
Fabre, M., Lécuyer, C., Brugal, J.-P., Amiot, R., Fourel, F., and Martineau, F. Late Pleistocene climatic change in the French Jura (Gigny) recorded in the δ18O of phosphate from ungulate tooth enamel. Quat. Res. 75, (2011). 605613.CrossRefGoogle Scholar
Fourel, F., Martineau, F., Lécuyer, C., Kupka, H.-J., Lange, L., Ojeimi, C., and Seed, M. 18O/16O ratio measurements of inorganic and organic materials by elemental analysis–pyrolysis–isotope ratio mass spectrometry continuous-flow techniques. Rapid Commun. Mass Spectrom. 25, (2011). 26912696.Google Scholar
Fricke, H.C., and O'Neil, J.R. The correlation between 18O/16O ratos of meteoric water and surface temperature: its use in investigating terrestrial climate change over geologic time. Earth Planet. Sci. Lett. 170, (1999). 181196.CrossRefGoogle Scholar
García-Alix, A., Delgado Huertas, A., Martín Suárez, E., and Freudenthal, M. Environmental conditions vs. landscape. Assessment of the factors that influence small mammal fauna distribution in Southern Iberia during the latest Messinian by mean of stable isotopes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 386, (2013). 492500.Google Scholar
Gehler, A., Tütken, T., and Pack, A. Oxygen and carbon isotope variations in a modern rodent community—implications for palaeoenvironmental reconstructions. PLoS One 7, (2012). e49531 Google Scholar
Genty, D., Combourieu-Nebout, N., Peyron, O., Blamart, D., Wainer, K., Mansuri, F., Ghaleb, B., Isabello, L., Dormoy, I., von Grafenstein, U., Bonelli, S., Landais, A., and Brauer, A. Isotopic characterization of rapid climatic events during OIS3 and OIS4 in Villars Cave stalagmites (SW-France) and correlation with Atlantic and Mediterranean pollen records. Quat. Sci. Rev. 29, (2010). 27992820.Google Scholar
Griggo, C. Etablissement de courbes climatiques quantifiées à partir de communautés animales pléistocènes suivi d'une application aux gisements de l'Abri Suard (Charente) et de la grotte de Bois-Ragot (Vienne). Paléo 8, (1996). 8198.CrossRefGoogle Scholar
Grootes, P.M., Stuiver, M., White, J.W.C., Johnsen, S., and Jouzel, J. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, (1993). 552554.Google Scholar
Guiot, J., de Beaulieu, J.-L., Cheddadi, R., David, F., Ponel, P., and Reille, M. The climate in Western Europe during the last glacial/interglacial cycle derived from pollen and insect remains. Palaeogeogr. Palaeoclimatol. Palaeoecol. 103, (1993). 7393.CrossRefGoogle Scholar
Halas, S., Skrzypek, G., Meier-Augenstein, W., Pelc, A., and Kemp, H.F. Inter-laboratory calibration of new silver orthophosphate comparison materials for the stable oxygen isotope analysis of phosphates. Rapid Commun. Mass Spectrom. 25, (2011). 579584.CrossRefGoogle ScholarPubMed
Hallin, K.A., Schoeninger, M.J., and Schwarcz, H.P. Paleoclimate during Neandertal and anatomically modern human occupation at Amud and Qafzeh, Israel: the stable isotope data. J. Hum. Evol. 62, (2012). 5973.CrossRefGoogle ScholarPubMed
Hatté, C., and Guiot, J. Palaeoprecipitation reconstruction by inverse modelling using the isotopic signal of loess organic matter: application to the Nußloch loess sequence (Rhine Valley, Germany). Clim. Dyn. 25, (2005). 315327.CrossRefGoogle Scholar
Hatté, C., Antoine, P., Fontugne, M., Lang, A., Rousseau, D.-D., and Zöller, L. δ13C of loess organic matter as a potential proxy for paleoprecipitation. Quat. Res. 55, (2001). 3338.CrossRefGoogle Scholar
Hernández Fernández, M., and Peláez-Campomanes, P. The bioclimatic model: a method of palaeoclimatic qualitative inference based on mammal associations. Glob. Ecol. Biogeogr. 12, (2003). 507517.Google Scholar
Hillson, S. Teeth. (2005). Cambridge Univ Pr., CrossRefGoogle Scholar
IAEA/WMO, Global Network of Isotopes in Precipitation. The GNIP Database. (2006). (Accessible at: http://isohis.iaea.org ) Google Scholar
Jeannet, M. L’écologie quantifiée. Essai de description de l’environnement continental à l’aide des microvertébrés. Préhistoires Méditerranéennes. (2010). (http://pm.revues.org/index492.html ) Google Scholar
Jeannet, M. La grotte du Taillis des Coteaux à Antigny (Vienne). Taphonomie et Paléo-environnement selon les microvertébrés. Bilan scientifique. (2011). 304313. Région Poitou-Charentes de Google Scholar
Joannin, S., Quillévéré, F., Suc, J.-P., Lécuyer, C., and Martineau, F. Early Pleistocene climate changes in the central Mediterranean region as inferred from integrated pollen and planktonic foraminiferal stable isotope analyses. Quat. Res. 67, (2007). 264274.Google Scholar
Jost, A., Lunt, D., Kageyama, M., Abe-Ouchi, A., Peyron, O., Valdes, P.J., and Ramstein, G. High-resolution simulations of the last glacial maximum climate over Europe: a solution to discrepancies with continental palaeoclimatic reconstructions?. Clim. Dyn. 24, (2005). 577590.CrossRefGoogle Scholar
Kageyama, M., Laîné, A., Abe-Ouchi, A., Braconnot, P., Cortijo, E., Crucifix, M., de Vernal, A., Guiot, J., Hewitt, C.D., Kitoh, A., Kucera, M., Marti, O., Ohgaito, R., Otto-Bliesner, B., Peltier, W.R., Rosell-Melé, A., Vettoretti, G., Weber, S.L., and Yu, Y. Last Glacial Maximum temperatures over the North Atlantic, Europe and western Siberia: a comparison between PMIP models, MARGO sea-surface temperatures and pollen-based reconstructions. Quat. Sci. Rev. 25, (2006). 20822102.CrossRefGoogle Scholar
Klevezal, G.A., and Shchepotkin, D.V. Incisor growth rate in rodents and the record of the entire annual cycle in the incisors of Marmota baibacina centralis. Biol. Bull. 39, (2012). 684691.Google Scholar
Klevezal, G., Pucek, M., and Surkhovskaja, L.I. Incisor growth in voles. Acta Theriol. 35, (1990). 331344.CrossRefGoogle Scholar
Le Louarn, H., and Quéré, J.P. Les rongeurs de France: faunistique et biologie. (2003). Inra Quae Google Scholar
Lécolle, P. The oxygen isotope composition of landsnail shells as a climatic indicator: applications to hydrogeology and paleoclimatology. Chem. Geol. Isot. Geosci. 58, (1985). 157181.CrossRefGoogle Scholar
Lécuyer, C. Chapitre 22: oxygen isotope analysis of phosphate. de Groot, P.A. Handbook of Stable Isotope Analytical Techniques vol. I, (2004). Elsevier, 482499.Google Scholar
Lécuyer, C., Grandjean, P., O'Neil, J.R., Cappetta, H., and Martineau, F. Thermal excursions in the ocean at the Cretaceous–Tertiary boundary (northern Morocco): δ18O record of phosphatic fish debris. Palaeogeogr. Palaeoclimatol. Palaeoecol. 105, (1993). 235243.CrossRefGoogle Scholar
Lécuyer, C., Fourel, F., Martineau, F., Amiot, R., Bernard, A., Daux, V., Escarguel, G., and Morrison, J. High-precision determination of 18O/16O ratios of silver phosphate by EA-pyrolysis-IRMS continuous flow technique. J. Mass Spectrom. 42, (2007). 3641.Google Scholar
Levin, N., Cerling, T.E., Passey, B.H., Harris, J.M., and Ehleringer, J.R. A stable isotope aridity index for terrestrial environments. Proc. Natl. Acad. Sci. 103, (2006). 1120111205.Google Scholar
Longinelli, A. Preliminary oxygen-isotope measurements of phosphate from mammal teeth and bones. Colloques internationaux du CNRS 219, (1973). 267271.Google Scholar
Longinelli, A. Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleoclimatological research. Geochim. Cosmochim. Acta 48, (1984). 385390.Google Scholar
Luz, B., Kolodny, Y., and Horowitz, M. Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochim. Cosmochim. Acta 48, (1984). 16891693.Google Scholar
Magri, D. Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica). J. Biogeogr. 35, (2008). 450463.Google Scholar
Montuire, S., Michaux, J., Legendre, S., and Aguilar, J.-P. Rodents and climate. 1. A model for estimating past temperatures using arvicolids (Mammalia: Rodentia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 128, (1997). 187206.Google Scholar
Navarro, N., Lécuyer, C., Montuire, S., Langlois, C., and Martineau, F. Oxygen isotope compositions of phosphate from arvicoline teeth and Quaternary climatic changes, Gigny, French Jura. Quat. Res. 62, (2004). 172182.Google Scholar
Podlesak, D.W., Torregrossa, A.-M., Ehleringer, J.R., Dearing, M.D., Passey, B.H., and Cerling, T.E. Turnover of oxygen and hydrogen isotopes in the body water, CO2, hair, and enamel of a small mammal. Geochim. Cosmochim. Acta 72, (2008). 1935.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., Van der Plicht, J., and Weyhenmeyer, C.E. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51, (2009). 11111150.Google Scholar
Rousseau, D.-D. Paleoclimatology of the Achenheim series (middle and upper pleistocene, Alsace, France). A malacological analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 59, (1987). 293314.Google Scholar
Royer, A., Lécuyer, C., Montuire, S., Amiot, R., Legendre, S., Cuenca-Bescós, G., Jeannet, M., and Martineau, F. What does the oxygen isotope composition of rodent teeth record?. Earth Planet. Sci. Lett. 361, (2013). 258271.Google Scholar
Royer, A., Lécuyer, C., Montuire, S., Escarguel, G., Fourel, F., Mann, A., and Maureille, B. Late Pleistocene (MIS 3–4) climate inferred from micromammal communities and δ18O of rodents from Les Pradelles, France. Quat. Res. 80, (2013). 113124.Google Scholar
Rozanski, K., Araguas-Araguas, L., and Gonfiantini, R. Isotopic patterns in modern global precipitation. Swart, P.K., Lohmann, K.C., McKenzie, J., and Savin, S. Climate Change in Continental Isotopic Records. (1993). American Geophysical Union, Washington, DC. 137.Google Scholar
Schrag, D.P., Adkins, J.F., McIntyre, K., Alexander, J.L., Hodell, D.A., Charles, C.D., and McManus, J.F. The oxygen isotopic composition of seawater during the Last Glacial Maximum. Quat. Sci. Rev. 21, (2002). 331342.Google Scholar
Shackleton, N.J. The 100,000-year Ice-Age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science 289, (2000). 18971902.Google Scholar
Smith, C.E., Chong, D.L., Bartlett, J.D., and Margolis, H.C. Mineral acquisition rates in developing enamel on maxillary and mandibular incisors of rats and mice: implications to extracellular acid loading as apatite crystals mature. J. Bone Miner. Res. 20, (2005). 240249.Google Scholar
Spitz, F. Le campagnol des champs (Microtus arvalis) en Europe. EPPO Bull. 7, (1977). 165175.Google Scholar
Stevens, R.E., Balasse, M., and O'Connell, T.C. Intra-tooth oxygen isotope variation in a known population of red deer: implications for past climate and seasonality reconstructions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 301, (2011). 6474.Google Scholar
Stewart, J.R., Lister, A.M., Barnes, I., and Dalén, L. Refugia revisited: individualistic responses of species in space and time. Proc. R. Soc. B Biol. Sci. 277, (2010). 661671.Google Scholar
Taylor, J.R. An Introduction to Error Analysis. 2nd ed. (1997). Univ Sci Books, Sausalito, California.Google Scholar
Tougard, C., Renvoisé, E., Petitjean, A., and Quéré, J.-P. New insight into the colonization processes of common voles: inferences from molecular and fossil evidence. PLoS One 3, (2008). e3532 Google Scholar
von Grafenstein, U., Erlenkeuser, H., Müller, J., Trimborn, P., and Alefs, J. A 200 year mid-European air temperature record preserved in lake sediments: an extension of the δ18Op–air temperature relation into the past. Geochim. Cosmochim. Acta 60, (1996). 40254036.Google Scholar
Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J.C., McManus, J.F., Lambeck, K., Balbon, E., and Labracherie, M. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Rev. 21, (2002). 295305.Google Scholar
Wainer, K., Genty, D., Blamart, D., Hoffmann, D., and Couchoud, I. A new stage 3 millennial climatic variability record from a SW France speleothem. Palaeogeogr. Palaeoclimatol. Palaeoecol. 271, (2009). 130139.CrossRefGoogle Scholar
Wu, H., Guiot, J., Brewer, S., and Guo, Z. Climatic changes in Eurasia and Africa at the last glacial maximum and mid-Holocene: reconstruction from pollen data using inverse vegetation modelling. Clim. Dyn. 29, (2007). 211229.Google Scholar
Yurtsever, Y. Worldwide survey of stable isotopes in precipitation. Report of the Section on Isotope Hydrology. (1975). International Atomic Energy Agency, Vienna. 140.Google Scholar
Zazzo, A., Lécuyer, C., and Mariotti, A. Experimentally-controlled carbon and oxygen isotope exchange between bioapatites and water under inorganic and microbially-mediated conditions. Geochim. Cosmochim. Acta 68, (2004). 112.CrossRefGoogle Scholar