Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-04T21:41:05.078Z Has data issue: false hasContentIssue false

Invalidation of the Intracavity Optogalvanic Method for Radiocarbon Detection

Published online by Cambridge University Press:  09 February 2016

Cantwell G Carson
Affiliation:
Earth and Environmental Engineering Department, Columbia University, New York, New York, USA. National Energy Technology Laboratory, U.S. Dept. of Energy, Pittsburgh, Pennsylvania, USA.
Martin Stute
Affiliation:
Department of Environmental Science, Barnard College, New York, New York, USA.
Yinghuang Ji
Affiliation:
Earth and Environmental Engineering Department, Columbia University, New York, New York, USA.
Roseline Polle
Affiliation:
École Polytechnique, Palaiseau, Île-de-France, France. Imperial College London, London, UK.
Arthur Reboul
Affiliation:
École Polytechnique, Palaiseau, Île-de-France, France. Neoen, Paris, Île-de-France, France.
Klaus S Lackner
Affiliation:
Earth and Environmental Engineering Department, Columbia University, New York, New York, USA. The Center for Negative Carbon Emissions, Arizona State University, Tempe, Arizona, USA.

Abstract

The intracavity optogalvanic spectroscopy (ICOGS) method has been reported to quantify radiocarbon at subambient levels (<1 part per trillion). ICOGS uses a gas sample that is ionized in a low-pressure glow discharge located inside a 14CO2 laser cavity to detect changes in the discharge current under periodic modulation of the laser power to determine the 14CO2 concentration of the sample. When claims of detection thresholds below ambient levels were not verified by other researchers, we constructed a theoretical analysis to resolve differences between these conflicting reports and built and tested an ICOGS system to establish a lower limit of detection. Using a linear absorbance model of the background contribution of 12CO2 and data from the HITRAN database, we estimate that the limit of detection (3σx) is close to 1.5×104 Modern. By measuring a 1.5×104 Modern enriched CO2 sample in a cavity modulation ICOGS system without a clear signal, we conclude that for this system the limit of detection for ICOGS must be above 1.5×104. The implications for previous ICOGS reports are discussed.

Type
Research Article
Copyright
© 2016 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bachor, HA, Manson, PJ, Sandeman, RJ. 1982. Optogalvanic detection as a quantitative method in spectroscopy. Optics Communications 43(5):337342.CrossRefGoogle Scholar
Berglund, M, Thornell, G, Persson, A. 2013. Microplasma source for optogalvanic spectroscopy of nanogram samples. Journal of Applied Physics 114(3):033302.CrossRefGoogle Scholar
Berglund, M, Persson, A, Thornell, G. 2014. Operation characteristics and optical emission distribution of a miniaturized silicon through-substrate split-ring resonator microplasma source. Journal of Microelectromechanical Systems 23(6):13401345.CrossRefGoogle Scholar
Bradley, L, Soohoo, K, Freed, C. 1986. Absolute frequencies of lasing transitions in nine CO2 isotopic species. IEEE Journal of Quantum Electronics 22:234267.CrossRefGoogle Scholar
Eilers, G, Persson, A, Gustavsson, C, Ryderfors, L, Mukhtar, E, Possnert, G, Salehpour, M. 2013. The radiocarbon intracavity optogalvanic spectroscopy setup at Uppsala. Radiocarbon 55(3–4):237250.CrossRefGoogle Scholar
Freed, C, Bradley, LC, O’Donnell, R. 1980. Absolute frequencies of lasing transitions in seven CO2 isotopic species. IEEE Journal of Quantum Electronics 16(11):11951206.CrossRefGoogle Scholar
Galli, I, Bartalini, S, Borri, S, Cancio, P, Mazzotti, D, De Natale, P, Giusfredi, G. 2011a. Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection. Physical Review Letters 107(27):270802.CrossRefGoogle ScholarPubMed
Galli, I, Pastor, PC, Di Lonardo, G, Fusina, L, Giusfredi, G, Mazzotti, D, Tamassia, F, De Natale, P. 2011b. The v3 band of 14C16O2 molecule measured by optical-frequency-comb-assisted cavity ring-down spectroscopy. Molecular Physics 109(17–18):22672272.CrossRefGoogle Scholar
Galli, I, Bartalini, S, Cancio, P, De Natale, P, Mazzotti, D, Giusfredi, G, Fedi, M, Mando, P. 2013. Optical detection of radiocarbon dioxide: first results and AMS intercomparison. Radiocarbon 55(2–3):213223.CrossRefGoogle Scholar
Hellborg, R, Skog, G. 2008. Accelerator mass spectrometry. Mass Spectrometry Reviews 27(5):398427.CrossRefGoogle ScholarPubMed
Ilkmen, E, Murnick, DE. 2010. High sensitivity laboratory based 14C analysis for drug discovery. Journal of Labelled Compounds & Radiopharmaceuticals 53(5–6):304307.Google Scholar
Litherland, AE, Zhao, XL, Kieser, WE. 2011. Mass spectrometry with accelerators. Mass Spectrometry Reviews 30(6):10371072.CrossRefGoogle ScholarPubMed
Mazzotti, D, Bartalini, S, Borri, S, Cancio, P, Galli, I, Giusfredi, G, De Natale, P. 2012. All-optical radiocarbon dating. Optics and Photonics News 23(12):52.CrossRefGoogle Scholar
Murnick, DE, Okil, JO. 2005. Use of the optogalvanic effect (OGE) for isotope ratio spectrometry of 13CO2 and 14CO2 . Isotopes in Environmental and Health Studies 41(4):363371.CrossRefGoogle ScholarPubMed
Murnick, DE, Dogru, O, Ilkmen, E. 2007. Laser based 14C counting, an alternative to AMS in biological studies. Nuclear Instruments and Methods in Physics Research B 259(1):786789.CrossRefGoogle Scholar
Murnick, DE, Dogru, O, Ilkmen, E. 2008. Intracavity optogalvanic spectroscopy. An analytical technique for 14C analysis with subattomole sensitivity. Analytical Chemistry 80(13):48204844.CrossRefGoogle ScholarPubMed
Murnick, D, Dogru, O, Ilkmen, E. 2010. 14C analysis via intracavity optogalvanic spectroscopy. Nuclear Instruments and Methods in Physics Research B 268(7–8):708711.CrossRefGoogle ScholarPubMed
Paul, D, Meijer, HAJ. 2015. Intracavity optogalvanic spectroscopy is not suitable for ambient level radiocarbon detection. Analytical Chemistry 87(17):90259032.CrossRefGoogle Scholar
Persson, A, Salehpour, M. 2015. Intracavity optogalvanic spectroscopy: Is there any evidence of a radiocarbon signal? Nuclear Instruments and Methods in Physics Research B 361:812.CrossRefGoogle Scholar
Persson, A, Eilers, G, Ryderfors, L, Mukhtar, E, Possnert, G, Salehpour, M. 2013. Evaluation of intracavity optogalvanic spectroscopy for radiocarbon measurements. Analytical Chemistry 85(14):67906798.CrossRefGoogle ScholarPubMed
Persson, A, Berglund, M, Salehpour, M. 2014a. Improved optogalvanic detection with voltage biased Langmuir probes. Journal of Applied Physics 116(24):243301.CrossRefGoogle Scholar
Persson, A, Berglund, M, Thornell, G, Possnert, G, Salehpour, M. 2014b. Stripline split-ring resonator with integrated optogalvanic sample cell. Laser Physics Letters 11(4):045701.CrossRefGoogle Scholar
Picqué, N, Gueye, F, Guelachvili, G, Sorokin, E, Sorokina, IT. 2005. Time-resolved Fourier transform intracavity spectroscopy with a Cr2+: ZnSe laser. Optics Letters 30(24):34103412.CrossRefGoogle ScholarPubMed
Povinec, PP, Litherland, AE, von Reden, KF. 2009. Developments in radiocarbon technologies: from the Libby counter to compound-specific AMS analyses. Radiocarbon 51(1):4578.CrossRefGoogle Scholar
Rothman, L, Gordon, I, Babikov, Y, Barbe, A, Benner, DC, Bernath, P, Birk, M, Bizzocchi, L, Boudon, V, Brown, L. 2013. The HITRAN2012 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer 130:450.CrossRefGoogle Scholar
Shrivastava, A, Gupta, VB 2011. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles of Young Scientists 2(1):21.CrossRefGoogle Scholar
Supplementary material: File

Carson supplementary material

Carson supplementary material 1

Download Carson supplementary material(File)
File 550 KB