Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-03T13:53:59.810Z Has data issue: false hasContentIssue false

Low-Flow Pressure Gradient Pumping for Active Absorption of CO2 on a Molecular Sieve

Published online by Cambridge University Press:  14 December 2016

Peng Cheng*
Affiliation:
State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, CAS, Xi’an 710061, China Xi’an AMS Center and Province Key Laboratory, Xi’an 710043, China
Shugang Wu
Affiliation:
State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, CAS, Xi’an 710061, China Xi’an AMS Center and Province Key Laboratory, Xi’an 710043, China
Yunchong Fu
Affiliation:
State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, CAS, Xi’an 710061, China Xi’an AMS Center and Province Key Laboratory, Xi’an 710043, China
Xiaohu Xiong
Affiliation:
State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, CAS, Xi’an 710061, China Xi’an AMS Center and Province Key Laboratory, Xi’an 710043, China
Zhenchuan Niu
Affiliation:
State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, CAS, Xi’an 710061, China Xi’an AMS Center and Province Key Laboratory, Xi’an 710043, China
Yukun Fan
Affiliation:
State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, CAS, Xi’an 710061, China Xi’an AMS Center and Province Key Laboratory, Xi’an 710043, China
*
*Corresponding author. Email: chp@ieecas.cn.

Abstract

The authors have developed an active absorption system combining a molecular sieve with a pressure gradient as a way to overcome the shortcomings of the phosphoric acid solution displacement method. Taking advantage of the pressure gradient produced between the inside and outside of a bottle, as water moves through it, CO2 in the atmosphere can actively be absorbed onto a molecular sieve in its pathway. A comparative study showed that the technique was in agreement with the phosphoric acid displacement method, within error. We applied the new method to collect not only atmospheric CO2 samples, but also CO2 samples from soil respiration to verify its utility. Simple yet practical, our method is well suited to extended collection times in a variety of environments, and capable of providing relatively large amounts of carbon for high-precision accelerator mass spectrometry (AMS) 14C analyses of atmospheric samples.

Type
Rapid Event in the Natural Atmospheric 14C Content
Copyright
© 2016 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 2015 Radiocarbon Conference, Dakar, Senegal, 16–20 November 2015

References

REFERENCES

Bauer, JE, Williams, PM, Druffel, ERM. 1992. Recovery of submilligram quantities of carbon dioxide from gas streams by molecular sieve for subsequent determination of isotopic (13C and 14C) natural abundances. Analytical Chemistry 64(7):824827.Google Scholar
Bol, RA, Harkness, DD. 1995. The use of zeolite molecular sieves for trapping low concentrations of CO2 from environmental atmospheres. Radiocarbon 37(2):643647.Google Scholar
Djuricin, S, Pataki, DE, Xu, XM. 2010. A comparison of tracer methods for quantifying CO2 sources in an urban region. Journal of Geophysical Research 115:D11303.Google Scholar
Donahue, DJ, Linick, TW, Jull, AJT. 1990. Isotope-ratio and background corrections for accelerator mass spectrometry radiocarbon measurements. Radiocarbon 32(2):135142.Google Scholar
Dörr, H, Münnich, KO. 1986. Annual variations of the 14C content of soil CO2 . Radiocarbon 28(2A):338345.Google Scholar
Garnett, MH, Hartley, IP. 2010. A passive sampling method for radiocarbon analysis of atmospheric CO2 using molecular sieve. Atmospheric Environment 44(7):877883.Google Scholar
Garnett, MH, Hartley, IP, Hopkins, DW, Sommerkorn, M, Wookey, PA. 2009. A passive sampling method for radiocarbon analysis of soil respiration using molecular sieve. Soil Biology and Biochemistry 41(7):14501456.Google Scholar
Gaudinski, JB, Trumbore, SE, Davidson, EA, Zheng, S. 2000. Soil carbon cycling in a temperate forest: radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes. Biogeochemistry 51(1):3369.Google Scholar
Giacobbe, FW. 1991. Adsorption of very low level carbon dioxide impurities in oxygen on a 13X molecular sieve. Gas Separation & Purification 5(1):1620.CrossRefGoogle Scholar
Hardie, SML, Garnett, MH, Fallick, AE, Rowland, AP, Ostle, NJ. 2005. Carbon dioxide capture using a zeolite molecular sieve sampling system for isotopic studies (13C and 14C) of respiration. Radiocarbon 47(3):441451.Google Scholar
Hsueh, DY, Krakauer, NY, Randerson, JT, Xu, X, Trumbore, SE, Southon, JR. 2007. Regional patterns of radiocarbon and fossil fuel-derived CO2 in surface air across North America. Geophysical Research Letters 34:L02816.CrossRefGoogle Scholar
IPCC. 2007. Climate Change 2007: The Physical Science Basis. Summary for Policymakers. Contribution of Working Group I to the Fourth Assessment Report. Cambridge: Cambridge University Press.Google Scholar
Jull, AJT. 2007. Radiocarbon dating: AMS method. In: Elias SA, editor. Encyclopedia of Quaternary Science. Oxford: Elsevier. p 29112918.Google Scholar
Koarashi, J, Amano, H, Andoh, M, Iida, T, Moriizumi, J. 2002. Estimation of 14CO2 flux at soil-atmosphere interface and distribution of 14C in forest ecosystem. Journal of Environmental Radioactivity 60(3):249261.Google Scholar
Kuc, T, Rozanski, K, Zimnoch, M, Necki, JM, Korus, A. 2003. Anthropogenic emissions of CO2 and CH4 in an urban environment. Applied Energy 75(3–4):193203.Google Scholar
Kuc, T, Rozanski, K, Zimnoch, M, Necki, J, Chmura, L, Jelen, D. 2007. Two decades of regular observations of 14CO2 and 13CO2 content in atmospheric carbon dioxide in central Europe: long-term changes of regional anthropogenic fossil CO2 emissions. Radiocarbon 49(2):807816.CrossRefGoogle Scholar
Le Quéré, C, Moriarty, R, Andrew, RM, Canadell, JG, Sitch, S, Korsbakken, JI, Friedlingstein, P, Peters, GP, Andres, RJ, Boden, TA, Houghton, RA, House, JI, Keeling, RF, Tans, P, Arneth, A, Bakker, DCE, Barbero, L, Bopp, L, Chang, J, Chevallier, F, Chini, LP, Ciais, P, Fader, M, Feely, R, Gkritzalis, T, Harris, I, Hauck, J, Ilyina, T, Jain, AK, Kato, E, Kitidis, V, Klein Goldewijk, K, Koven, C, Landschützer, P, Lauvset, SK, Lefèvre, N, Lenton, A, Lima, ID, Metzl, N, Millero, F, Munro, DR, Murata, A, Nabel, JEMS, Nakaoka, S, Nojiri, Y, O’Brien, K, Olsen, A, Ono, T, Pérez, FF, Pfeil, B, Pierrot, D, Poulter, B, Rehder, G, Rödenbeck, C, Saito, S, Schuster, U, Schwinger, J, Séférian, R, Steinhoff, T, Stocker, BD, Sutton, AJ, Takahashi, T, Tilbrook, B, van der Laan-Luijkx, IT, van der Werf, GR, van Heuven, S, Vandemark, D, Viovy, N, Wiltshire, A, Zaehle, S, Zeng, N. 2015. Global Carbon Budget 2015. Earth System Science Data. DOI: 10.5194/essd-7-349-2015.Google Scholar
Levin, I, Hesshaimer, V. 2000. Radiocarbon—a unique tracer of global carbon cycle dynamics. Radiocarbon 42(1):6980.Google Scholar
Levin, I, Karstens, U. 2007. Inferring high-resolution fossil fuel CO2 records at continental sites from combined 14CO2 and CO observations. Tellus B 59:245250.Google Scholar
Levin, I, Rodenbeck, C. 2008. Can the envisaged reductions of fossil fuel CO2 emissions be detected by atmospheric observations? Naturwissenschaften 95:203208.Google Scholar
Levin, I, Schuchard, J, Kromer, B, Münnich, KO. 1989. The continental European Suess effect. Radiocarbon 31(3):431440.Google Scholar
Levin, I, Kromer, B, Schmidt, M, Sartorius, H. 2003. A novel approach for independent budgeting of fossil fuel CO2 over Europe by 14CO2 observations. Geophysical Research Letters 30(23):2194.Google Scholar
Levin, I, Hammer, S, Kromer, B, Meinhardt, F. 2008. Radiocarbon observations in atmospheric CO2: determining fossil fuel CO2 over Europe using Jungfraujoch observations as background. Science of the Total Environment 391:211216.Google Scholar
Marland, G, Boden, TA, Andres, RJ. 2006. Global, regional, and national CO2 emissions. In: Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory. Oak Ridge: US Department of Energy.Google Scholar
Palonen, V. 2015. A portable molecular-sieve-based CO2 sampling system for radiocarbon measurements. Review of Scientific Instruments 86:125101.Google Scholar
Raupach, M, Marland, G, Ciais, P, Le Quéré, C, Canadell, JG, Klepper, G, Field, CB. 2007. Global and regional drivers of accelerating CO2 emissions. Proceedings of the National Academy of Science of the USA 104(24):10,288–93.Google Scholar
Slota, PJ, Jull, AJT, Linick, TW. 1987. Preparation of small samples for 14C accelerator targets by catalytic reduction of CO2 . Radiocarbon 29(2):303306.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355363.Google Scholar
Takahashi, HA, Konohira, E, Hiyama, T, Minami, M, Nakamura, T, Yoshida, N. 2002. Diurnal variation of CO2 mixing ratio, Δ14C and δ13C in an urban forest: estimate of the anthropogenic and biogenic CO2 contributions. Tellus B 54:97109.Google Scholar
Turnbull, JC, Miller, JB, Lehman, SJ, Tans, PP, Sparks, RJ, Southon, J. 2006. Comparison of 14CO2, CO, and SF6 as tracers for recently added fossil fuel CO2 in the atmosphere and implications for biological CO2 exchange. Geophysical Research Letters 33:L01817.Google Scholar
Walker, JC, Xu, X, Fahrni, SM, Lupascu, M, Czimczik, CI. 2015. Developing a passive trap for diffusive atmospheric 14CO2 sampling. Nuclear Instruments and Methods in Physics Research B 361:632637.Google Scholar
Zhou, W, Zhao, X, Lu, XF, Liu, L, Wu, Z, Peng, C, Zhao, W, Huang, C. 2006. The 3MV multi-element AMS in Xi’an, China: unique features and preliminary tests. Radiocarbon 48(2):285293.Google Scholar
Zhou, W, Wu, S, Huo, W, Xiong, X, Cheng, P, Lu, X, Niu, Z. 2014. Tracing fossil fuel CO2 using Δ14C in Xi’an City, China. Atmospheric Environment 94:538545.CrossRefGoogle Scholar