Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-23T19:43:42.464Z Has data issue: false hasContentIssue false

Preparation and Dating of Mortar Samples—Mortar Dating Inter-Comparison Study (MODIS)

Published online by Cambridge University Press:  10 November 2017

Irka Hajdas*
Affiliation:
Laboratory of Ion Beam Physics, ETHZ, Otto-Stern-Weg 5, 8093 Zurich, Switzerland
Alf Lindroos
Affiliation:
Dept. of Geology and Mineralogy, Åbo Akademi University, Finland
Jan Heinemeier
Affiliation:
Aarhus AMS Centre, Department of Physics and Astronomy, Aarhus University, Denmark
Åsa Ringbom
Affiliation:
Department of Art History, Åbo Akademi University, Finland
Fabio Marzaioli
Affiliation:
CIRCE-INNOVA and Department of Mathematics and Physics, Università della Campania “Luigi Vanvitelli” Italy
Filippo Terrasi
Affiliation:
CIRCE-INNOVA and Department of Mathematics and Physics, Università della Campania “Luigi Vanvitelli” Italy
Isabella Passariello
Affiliation:
CIRCE-INNOVA and Department of Mathematics and Physics, Università della Campania “Luigi Vanvitelli” Italy
Manuela Capano
Affiliation:
CIRCE-INNOVA and Department of Mathematics and Physics, Università della Campania “Luigi Vanvitelli” Italy
Gilberto Artioli
Affiliation:
Dipartimento di Geoscienze, Università di Padova, Italy
Anna Addis
Affiliation:
Dipartimento di Geoscienze, Università di Padova, Italy
Michele Secco
Affiliation:
Dipartimento di Geoscienze, Università di Padova, Italy
Danuta Michalska
Affiliation:
Institute of Geology, Adam Mickiewicz University, ul. Bogumiła Krygowskiego 12, 61-680 Poznań, Poland
Justyna Czernik
Affiliation:
Poznań Radiocarbon Laboratory, Poznań Park of Science and Technology ul. Rubież 46, 61-612 Poznań, Poland
Tomasz Goslar
Affiliation:
Poznań Radiocarbon Laboratory, Poznań Park of Science and Technology ul. Rubież 46, 61-612 Poznań, Poland Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland
Roald Hayen
Affiliation:
Royal Institute for Cultural Heritage, Jubelpark 1, 1000 Brussels, Belgium
Mark Van Strydonck
Affiliation:
Royal Institute for Cultural Heritage, Jubelpark 1, 1000 Brussels, Belgium
Laurent Fontaine
Affiliation:
Royal Institute for Cultural Heritage, Jubelpark 1, 1000 Brussels, Belgium
Mathieu Boudin
Affiliation:
Royal Institute for Cultural Heritage, Jubelpark 1, 1000 Brussels, Belgium
Francesco Maspero
Affiliation:
CUDAM, Università di Milano-Bicocca, piazza della Scienza 4, 20126 Milano, Italy
Laura Panzeri
Affiliation:
Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy
Anna Galli
Affiliation:
CNR-IFN, Piazza L. Da Vinci 32, 20133 Milano, Italy
Petra Urbanová
Affiliation:
IRAMAT-CRP2A, UMR5060 CNRS – Univ. Bordeaux Montaigne, France
Pierre Guibert
Affiliation:
IRAMAT-CRP2A, UMR5060 CNRS – Univ. Bordeaux Montaigne, France
*
*Corresponding author. Email: hajdas@phys.ethz.ch.

Abstract

Seven radiocarbon laboratories: Åbo/Aarhus, CIRCE, CIRCe, ETHZ, Poznań, RICH, and Milano-Bicocca performed separation of carbonaceous fractions suitable for 14C dating of four mortar samples selected for the MOrtar Dating Inter-comparison Study (MODIS). In addition, optically stimulated luminescence (OSL) analyses were completed by Milano-Bicocca and IRAMAT-CRP2A Bordeaux. Each laboratory performed separation according to laboratory protocol. Results of this first intercomparison show that even though consistent 14C ages were obtained by different laboratories, two mortars yielded ages different than expected from the archaeological context.

Type
Method Development
Copyright
© 2017 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 8th Radiocarbon & Archaeology Symposium, Edinburgh, UK, 27 June–1 July 2016

References

REFERENCES

Addis, A, Secco, M, Preto, N, Marzaioli, F, Passariello, I, Brogiolo, GP, Chavarria Arnau, A, Artioli, G, Terrasi, F. 2016. New strategies for radiocarbon dating of mortars: Multi-step purification of the lime binder. Proceedings of 4th Historic Mortars, Santorini, Greece 10–12 October 2016.Google Scholar
Aitken, MJ. 1985. Thermoluminescence Dating. London: Academic Press. 267 p.Google Scholar
Bell, WT. 1979. Attenuation factors to absorbed dose in quartz inclusions for thermoluminescence dating. Ancient TL 8:213.Google Scholar
Binda, I, Baronio, G. 1988. Survey of brick-binder adhesion in ‘powdered brick’ mortars and plasters, Masonry International Journal 2: pp. 8792.Google Scholar
Fahrni, SM, Gaggeler, HW, Hajdas, I, Ruff, M, Szidat, S, Wacker, L. 2010. Direct measurements of small C-14 samples after oxidation in quartz tubes. Nuclear Instruments and Methods in Physics Research B 268:787789.Google Scholar
Folk, RL, Valastro, S. 1976. Successful technique for dating of lime mortar by carbon-14 J. Field Archaeology 3(2)203208.Google Scholar
Folk, RL, Valastro, S. 1979. Dating of lime mortar by 14C. In: Berger R, Suess H, editors. Radiocarbon Dating: Proceedings of the Ninth International Conference. Berkeley: University of California Press. p 721730.CrossRefGoogle Scholar
Goslar, T, Nawrocka, D, Czernik, J. 2009. Foraminiferous limestones in 14C dating of mortar. Radiocarbon 51(2):857866.CrossRefGoogle Scholar
Goedicke, C. 2011. Dating mortar by optically stimulated luminescence: a feasibility study. Geochronometria 38(1):4249.Google Scholar
Goedicke, C. 2003. Dating historical calcite mortar by blue OSL: results from known age samples. Radiation Measurements 37:409415.Google Scholar
Guérin, G, Myank, J, Thomsen, K, Murray, A, Mercier, N. 2015. Modelling dose rate to single grains of quartz in well-sorted sand samples: the dispersion arising from the presence of potassium feldspars and implications for single grain OSL dating. Quaternary Geochronology 27:5265.Google Scholar
Guibert, P, Schvoerer, M. 1991. TL-dating: Low background gamma spectrometry as a tool for the determination of the annual dose. Nuclear Tracks and Radiation Measurements 14:155161.Google Scholar
Hajdas, I, Trumm, J, Bonani, G, Biechele, C, Maurer, M, Wacker, L. 2012. Roman ruins as an experiment for radiocarbon dating of mortar. Radiocarbon 54(3–4):897903.Google Scholar
Hayen, R, Van Strydonck, M, Boaretto, E, Lindroos, A, Heinemeier, J, Ringbom, Å, Hueglin, S, Michalska, D, Hajdas, I, Marzaoili, F, Maspero, F, Galli, A, Artioli, G, Moreau, Ch, Guibert, P, Caroselli, M. 2016. Absolute dating of mortars – integrating chemical and physical techniques to characterize and select the mortar samples. Proceedings of the 4th Historic Mortars Conference - HMC2016. 656667.Google Scholar
Hayen, R, Van Strydonck, M, Fontaine, L, Boudin, M, Lindroos, A, Heinemeier, J, Ringbom, Å, Michalska, D, Hajdas, I, Hueglin, S, Marzaioli, F, Terrasi, F, Passariello, I, Capano, M, Maspero, F, Panzeri, L, Galli, A, Artioli, G, Addis, A, Secco, M, Boaretto, E, Moreau, C, Guibert, P, Urbanova, P, Czernik, J, Goslar, T, Caroselli, M. 2017. Mortar dating methodology: intercomparison of available methods. Radiocarbon 59(6):this volume.Google Scholar
Heinemeier, J, Jungner, H, Lindroos, A, Ringbom, Å, von Konow, T, Rud, N. 1997. AMS 14C dating of lime mortar. Nuclear Instruments and Methods in Physics Research B 123:487495.Google Scholar
Heinemeier, J, Ringbom, Å, Lindroos, A, Sveinbjörnsdóttir, ÁE. 2010. Successful AMS 14C dating of non-hydraulic lime mortars from the medieval churches of the Åland Islands, Finland. Radiocarbon 52(1):171204.Google Scholar
Hodgins, G, Lindroos, A, Ringbom, Å, Heinemeier, J, Brock, F. 2011. 14C dating of roman Mortars – preliminary tests using diluted hydrochloric acid injected in batches. Commentationes Humanarum Litterarum 128:209213.Google Scholar
Labeyrie, J, Delibrias, G. 1964. Dating of old mortars by the carbon-14 method. Nature 201(4920):742.Google Scholar
Lichtenberger, A, Lindroos, A, Raja, R, Heinemeier, J. 2015. Radiocarbon analysis of mortar from Roman and Byzantine water management installations in the Northwest Quarter of Jerash, Jordan. Journal of Archaeological Science: Reports 2:114127.Google Scholar
Lindroos, A, Heinemeier, J, Ringbom, Å, Braskén, M, Sveinbjörnsdóttir, Á. 2007. Mortar dating using AMS 14C and sequential dissolution: examples from medieval, non-hydraulic lime mortars from the Åland Islands, SW Finland. Radiocarbon 49(1):4767.CrossRefGoogle Scholar
Lindroos, A, Heinemeier, J, Ringbom, Å, Brock, F, Sonck-Koota, P, Pehkonen, M, Suksi, J. 2011. Problems in radiocarbon dating of Roman Pozzolana mortars. In: Ringbom Å, Hohlfelder R, editors. Building Roma Aeterna. Current research on Roman Mortar and Concrete. Proceedings of the conference March 27–29, 2008. Commentationes Humanarum Litterarum 128: 214–30.Google Scholar
Martin, L, Mercier, N, Incerti, S, Lefrais, Y, Pecheyran, C, Guérin, G, Jarry, M, Bruxelles, L, Bon, F, Pallier, C. 2015. Dosimetric study of sediments at the beta dose rate scale: characterization and modelization with the DosiVox software. Radiation Measurements 81:134141. DOI: 10.1016/j.radmeas.2015.02.008.8.CrossRefGoogle Scholar
Marzaioli, F, Lubritto, C, Nonni, S, Passariello, I, Capano, M, Terrasi, F. 2011. Mortar radiocarbon dating: Preliminary accuracy evaluation of a novel methodology. Analytical Chemistry 83(6):20382045.Google Scholar
Marzaioli, F, Nonni, S, Passariello, I, Capano, M, Ricci, P, Lubritto, C, De Cesare, N, Eramo, G, Castillo, JAQ, Terrasi, F. 2013. Accelerator mass spectrometry 14C dating of lime mortars: methodological aspects and field study applications at CIRCE (Italy). Nuclear Instruments and Methods in Physics Research B 294:246251.Google Scholar
Marzaioli, F, Borriello, G, Passariello, I, Lubritto, C, De Cesare, N, D’Onofrio, A, Terrasi, F. 2008. Zinc reduction as an alternative method for AMS radiocarbon dating: Process optimization at CIRCE. Radiocarbon 50(1):139149.Google Scholar
McCrea, JMJ. 1950. Isotopic chemistry of carbonates and a paleo-temperature scale. J. Chem. Phys. 18:849857.Google Scholar
Michalska, D, Czernik, J, Gosar, T. 2017. Methodological aspect of mortars dating (Poznań, Poland, MODIS). Radiocarbon 59(6):submitted.Google Scholar
Michalska, D, Czernik, J. 2015. Carbonates in leaching reactions in context of 14C dating. Nuclear Instruments and Methods in Physics Research B 361:431439.Google Scholar
Michalska, D, Pazdur, A, Czernik, J, Szczepaniak, M, Żurakowska, M. 2013. Cretaceous aggregate and reservoir effect in dating of binding materials. Geochronometria 40(1):3341.Google Scholar
Murray, AS, Wintle, A. 2000. Luminescence dating of quartz using an improved single-aliquot regenerative dose protocol. Radiation Measurements 32:523538.Google Scholar
Nawrocka-Michalska, D, Michczyńska, DJ, Pazdur, A, Czernik, J. 2007. Radiocarbon chronology of the ancient settlement on the Golan Heights. Radiocarbon 49(2):625637.CrossRefGoogle Scholar
Nawrocka, D, Czernik, J, Goslar, T. 2009. 14C dating of carbonate mortars from Polish and Israeli sites. Radiocarbon 51(2):857866.Google Scholar
Nawrocka, D, Michniewicz, J, Pawlyta, J, Pazdur, A. 2005. Application of radiocarbon method for dating of lime mortars. Geochronometria 24:109115.Google Scholar
Nonni, S, Marzaioli, F, Secco, M, Passariello, I, Capano, M, Lubritto, C, Mignardi, S, Tonghini, C, Terrasi, F. 2013. 14C mortar dating: the case of the Medieval Shayzar Citadel, Syria. Radiocarbon 55(2):514525.Google Scholar
Panzeri, L. 2013. Mortar and surface dating with optically stimulated luminescence (OSL): innovative techniques for the age determination of buildings. Nuovo Cimento della 36(4):205216.Google Scholar
Prescott, JR, Hutton, JT. 1994. Cosmic ray contribution to dose rates for luminescence and ESR dating. Radiation Measurements 23(2-3):497500.Google Scholar
Ringbom, Å, Remmer, C. 1995. Ålands kyrkor, Volym I, Hammarland och Eckerö, Naturvetenskaplig datering. Mariehamn. p 6068.Google Scholar
Ringbom, Å, Heinemeier, J, Lindroos, A, Brock, F. 2011. Mortar dating and roman pozzolana, results and interpretations. In: Ringbom Å, Hohlfelder R, editors. Building Roma Aeterna. Current research on Roman Mortar and Concrete. Proceedings of the conference March 27–29, 2008. Commentationes Humanarum Litterarum 128:187–208.Google Scholar
Ringbom, Å, Lindroos, A, Heinemeier, J, Sonck-Koota, P. 2014. 19 years of mortar dating: learning from experience. Radiocarbon 56(2):619635.Google Scholar
Stuiver, M, Smith, CS. 1965. 6th International Conference on Radiocarbon and Tritium Dating, Pullman, WA. p 338-343.Google Scholar
Van Strydonck, M, Dupas, M, Dauchot-Dehon, M, Pachiaudi, C, Marechal, J. 1983a. A further step in the radiocarbon dating of old mortars: Bull Kon Inst Kunstpatrimonium, v XIX, 1982/83. p 155171.Google Scholar
Van Strydonck, M, Dupas, M, Dauchot-Dehon, M. 1983b. Radiocarbon dating of old mortars. In: Mook WG, Waterbolk HT, editors. 14C and Archaeology, Proceedings. PA C T 8:337343.Google Scholar
Van Strydonck, M, Dupas, M, Dauchot-Dehon, M, Pachiaudi, Ch, Marechal, J. 1986. The influence of contaminating carbonate and the variations of δ13C in mortar dating. Radiocarbon 28(2A):702710.Google Scholar
Van Strydonck, M Boudin, De Mulder, G. 2009. 14C dating of cremated bones: the issue of sample contamination. Radiocarbon 51(2):553568.Google Scholar
Van Strydonck, M, Aramburu, J, Fernández Martínez, A, Alvarez Jurado-Figueroa, M, Boudin, M, De Mulder, G. 2017. Radiocarbon dating of the Son Pellisser lime burial (Calvià, Mallorca). Journal of Archaeological Science: Reports 11:471479.Google Scholar
Terrasi, F, De Cesare, N, D’Onofrio, A, Lubritto, C, Marzaioli, F, Passariello, I, Rogalla, D, Sabbarese, C, Borriello, G, Casa, G, Passariello, I. 2008. High precision 14C AMS at CIRCE. Nuclear Instruments and Methods in Physics Research B 266:22212224.CrossRefGoogle Scholar
Urbanová, P, Hourcade, D, Ney, C, Guibert, P. 2015. Sources of uncertainties in OSL dating of archaeological mortars: the case study of the Roman amphitheatre Palais-Gallien in Bordeaux. Radiation Measurements 72:100110.Google Scholar
Urbanová, P, Delaval, E, Dufresne, P, Lanos, P, Guibert, P. 2016. Multi-method dating of Grimaldi castle foundations in Antibes, France. ArchéoSciences - Revue d’archéométrie 40:1733.CrossRefGoogle Scholar
Urbanová, P, Guibert, P. 2017a. A review on Single grain OSL dating of mortars: a methodological study of five reference archaeological sites. Geochronometria. DOI: 10.1515/geochr-2015-0050.Google Scholar
Urbanová, P, Guibert, P. 2017b. La mesure du temps par luminescence : datation de réemplois dans la crypte de Saint Seurin à Bordeaux, dossier « Atelier doctoral. Les remplois en architecture entre Antiquité et Moyen Âge » des. Mélanges de l’École française de Rome, 129, 1.Google Scholar
Vogel, JS, Southon, JR, Nelson, DE, Brown, TA. 1984. Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research B 5:289.CrossRefGoogle Scholar
Zacharias, N, Mauz, B, Michael, CT. 2002. Luminescence quartz dating of lime mortars. A first research approach. Radiation Protection Dosimetry 101:379382.Google Scholar
Supplementary material: File

Hajdas et al supplementary material

Table S1

Download Hajdas et al supplementary material(File)
File 57.7 KB