Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-18T08:12:36.494Z Has data issue: false hasContentIssue false

Fertilization and embryonic developmental capacity of epididymal and testicular sperm and immature spermatids and spermatocytes

Published online by Cambridge University Press:  03 June 2009

Orly Lacham-Kaplan*
Affiliation:
Laboratories of Human and Animal Reproductive Biology, Institute for Reproduction and Development, Monash Medical Centre, Australia
Alan Trounson
Affiliation:
Laboratories of Human and Animal Reproductive Biology, Institute for Reproduction and Development, Monash Medical Centre, Australia
*
Laboratories of Human and Animal Reproductive Biology, Institute for Reproduction and Development, Monash Medical Centre, 246 Clayton Rd, Clayton 3168, Australia.

Extract

Spermatogenesis in mammalian species begins after birth. The gonocytes, arrested at G2 of the cell cycle in the foetus, resume mitotic proliferation after birth. As identified in the mouse, the gonocytes migrate towards the periphery of the seminiferous cords at day 4 to day 6 after birth and are located in close contact with the basal lamina. From this stage the gonocytes are referred to as primitive type A spermatogonia. These cells continue mitotic proliferation and differentiate to form type B spermatogonia. By day 10 after birth, many of the type B spermatogonia have formed preleptotene primary spermatocytes which undergo a final phase of DNA synthesis (leptotene) prior to entering meiotic prophase (zygotene).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bellve, AR, Millette, CF, Bhatnagar, YM, O'Brien, DA. Dissociation of the mouse testis and characterisation of isolated spermatogenic cells. J Histochem Cytochem 1977; 25: 480–94.CrossRefGoogle ScholarPubMed
2Eddy, EM, Clark, JM, Gony, D, Fenderson, BA. Origin and migration of primordial germinal cells in mammals. Gamete Res 1981; 4: 333–62.CrossRefGoogle Scholar
3Martin-du, Pan R, Campana, A. Physiopathology of spermatogenic arrest. Fertil Steril 1993; 60: 937–46.CrossRefGoogle Scholar
4Meistrich, ML, Bruce, WR, Clermont, Y. Cellular composition of fractions of mouse testis cells following velocity sedimentation separation. Exp Cell Res 1973; 79: 213–27.CrossRefGoogle ScholarPubMed
5Meistrich, ML, Reid, BO, Barcellona, WJ. Changes in sperm nuclei during spermatogenesis and epididymal maturation. Exp Cell Res 1976; 99: 72–8.CrossRefGoogle Scholar
6Rodman, TC, Litwin, SD, Romani, M, Vidali, G. Life history of mouse sperm protein. J Cell Biol 1979; 80: 605–20.CrossRefGoogle ScholarPubMed
7Zirkin, BR, Soucek, DA, Chang, TSK. Sperm nuclear packing and regulation during spermatogenesis and fertilization. Johns Hopkins Med J 1982; 151: 101–12.Google ScholarPubMed
8Pruslin, FH, Imesch, E, Winston, R, Rodman, TC. Phosphorylation state of protamines 1 and 2 in human spermatids and spermatozoa. Gamete Res 1987; 18: 179–80.CrossRefGoogle ScholarPubMed
9McPherson, S, Longo, FJ. Chromatin structure-functions alternations during mammalian spermatogenesis: DNA nicking and repair in elongating spermatids. Eur J Hist 1993; 37: 109–28.Google Scholar
10Kosower, NS, Katayose, H, Yanagimachi, R. Thioldisulfide status and acridine orange fluorescence of mammalian sperm nuclei. J Androl 1992; 13: 342–8.CrossRefGoogle ScholarPubMed
11Auger, J, Dadoune, JP. Nuclear status of human sperm cells by transmission electron microscopy and image cytometry: changes in nuclear shape and chromatin texture during spermatogenesis and epididymal transit. Biol Reprod 1993; 49: 166–75.CrossRefGoogle ScholarPubMed
12Kopecny, V, Pavlok, A. Autoradiographic study of mouse spermatozoa arginine-rich nuclear protein in fertilization. J Exp Zool 1974; 191: 8596.CrossRefGoogle Scholar
13Ecklund, PS, Levine, L. Mouse sperm basic nuclear protein. J Cell Biol 1975; 66: 251–62.CrossRefGoogle ScholarPubMed
14Betzalel, M, Shalgi, R, Moav, B. Protamine in the rat, its fate in vivo and its degradation in vitro by egg homogenate. Gamete Res 1986; 14: 293306.CrossRefGoogle Scholar
15Pavlok, A. Development of the penetration activity of mouse epididymal spermatozoa in vivo and in vitro. J Reprod Fertil 1974; 36: 203–5.CrossRefGoogle ScholarPubMed
16Moore, HDM, Hartman, TD, Pryor, JP. Development of the oocyte-penetrating capacity of spermatozoa in the human epididymus. Int J Androl 1983; 6: 310–18.CrossRefGoogle Scholar
17Yeung, CM, Cooper, TG, Oberpenning, F, Sculze, H, Nieschlag, C. Changes in movement characteristics of human spermatozoa along the length of the epididymis. Biol Reprod 1993; 49: 174280.CrossRefGoogle ScholarPubMed
18Austin, CR. Sperm maturation in the male and female genital tracts. In: Meltz, CB ed. Biology of fertilization: the biology of sperm. New York: Academic Press; 1995: 121–55.Google Scholar
19Blaquier, JA, Cameo, SM, Cuasnicu, PS, Gonzalez, MF, Pineiro, L, Tezon, JG. The role of epididymal factors in human sperm fertilizing ability. Ann NY Acad Sci 1988; 541: 292–6.CrossRefGoogle ScholarPubMed
20Yanagimachi, R. Mammalian fertilization. In: Knobil, E, Neil, JD eds. The physiology of reproduction. New York: Raven Press; 1994: 189317.Google Scholar
21Orgabin-Crist, MC. Studies on the function of the epididymis. Biol Reprod 1969; 1: 155–75.CrossRefGoogle Scholar
22Dacheux, JL, Paquignon, M. Relations between the fertilizing ability, motility and metabolism of epididymal spermatozoa. Reprod Nature Dev 1980; 20: 1085–99.CrossRefGoogle ScholarPubMed
23Lacham, O, Trounson, A. Fertilizing capacity of epididymal and testicular spermatozoa microinjected under the zona pellucida of the mouse oocyte. Mol Reprod Dev 1991; 29: 8593.CrossRefGoogle ScholarPubMed
24Amann, RP. The epididymis and sperm maturation, a perspective. Reprod Fertil Dev 1993; 5: 361–81.CrossRefGoogle ScholarPubMed
25Fournier-Delpech, S, Court, M. Sperm zone pellucida activity. Oxf Reprod Biol 1987; 9: 294321.Google Scholar
26Ogura, A, Yanagimachi, R, Usui, N. Behaviour of hamster and mouse round spermatid nuclei incorporated into mature oocytes by electrofusion. Zygote 1993; 1: 18.CrossRefGoogle ScholarPubMed
27Silber, SJ. The use of epididymal sperm in assisted reproduction. In: Tesarik, J ed. Male factor in human infertility. Rome: Ares-Serono Symposia Publications; 1994: 335–68.Google Scholar
28Silber, SJ, Nagy, ZP, Liu, J, Godoy, H, Devroey, P, Van Steirteghem, AC. Conventional in-vitro fertilization versus intracytoplasmic sperm injection for patients requiring microsurgical sperm aspiration. Hum Reprod 1994; 9: 1705–9.CrossRefGoogle ScholarPubMed
29Kimura, Y, Yanagimachi, R. Mouse oocytes injected with testicular spermatozoa or round spermatids can develop into normal offspring. Development 1995; 121: 2397–405.CrossRefGoogle ScholarPubMed
30Kimura, Y, Yanagimachi, R. Development of normal mice from oocytes injected with secondary spermatocytes nuclei. Biol Reprod 1995; 53: 855–62.CrossRefGoogle ScholarPubMed
31Bladou, F, Grillo, JM, Rossi, D, Noizet, A, Gamerre, M, Erny, R, Luciani, JM, Serment, G. Epididymal sperm aspiration in conjunction with in-vitro fertilization and embryo transfer in cases of obstructive azoospermia. Hum Reprod 1991; 6: 1284–7.CrossRefGoogle ScholarPubMed
32Hirsh, AV, Mills, C, Bekir, J, Dean, N, Yovich, JL, Tan, SL. Factors influencing the outcome of in-vitro fertilization with epididymal spermatozoa in irreversible obstructive azoospermia. Hum Reprod 1994; 9: 1710–16.CrossRefGoogle ScholarPubMed
33Orgabin-Crist, MC. Maturation of spermatozoa in the rabbit epididymis: fertilizing ability and embryonic mortality in does inseminated with epididymal spermatozoa. Biol Anim Biochem Biophys 1967; 7: 373–85.CrossRefGoogle Scholar
34Orgebin-Crist, MC, Jahad, N. Delayed cleavage of rabbit ova after fertilization by young epididymal spermatozoa. Biol Reprod 1977; 16: 358–62.CrossRefGoogle ScholarPubMed
35Wazzan, WC, Gwatkin, RBL, Thomas, AJ. Zona drilling enhances fertilization by mouse caput epididymal sperm. Mol Reprod Dev 1990; 27: 332–6.CrossRefGoogle ScholarPubMed
36Lacham-Kaplan, O, Trounson, A. Embryo development capacity of oocytes fertilized by immature sperm and sperm treated with motility stimulants. Reprod Fertil Dev 1994; 6: 113–16.CrossRefGoogle ScholarPubMed
37Bongso, A, Trounson, A. Evaluation of motility, fertilizing ability and embryonic of murine epididymal sperm after co-culture with epididymal epithelium. Hum Reprod 196; 11: 1451–6.CrossRefGoogle Scholar
38Temple-Smith, PD, Southwick, GJ, Yates, CA, Trounson, AO, De Kretser, DM. Human pregnancy by in vitro fertilization (IVF) using sperm aspirated from the epididymis. J In Vitro Fertil Embryo Trans 1985; 2: 119–22.CrossRefGoogle ScholarPubMed
39Silber, J, Balmaceda, J, Borrero, C, Ord, T, Asch, R. Pregnancy with sperm aspiration from the proximal head of the epididymis: a new treatment for congenital absence of the vas deference. Fertil Steril 1988; 3: 525–8.CrossRefGoogle Scholar
40Jequier, AM, Cummins, JM, Gearon, C, Apted, SL, Yovich, JM, Yovich, JL. A pregnancy achieved using sperm from the epididymal caput in idiopathic obstructive azoospermia. Fertil Steril 1990; 53: 1104–5.CrossRefGoogle ScholarPubMed
41Steinleitner, A, Sharlip, I, Lambert, H, Garcia, M, Nachtigall, R. Treatment of congenital vas obstruction with sperm aspiration, nonstimulated in vitro fertilization and nonsurgical tubal embryo transfer. J Assis Reprod Genet 1992; 9: 407–9.CrossRefGoogle ScholarPubMed
42Fukugaki, H, Suganuma, N, Kitagawa, T, Yamamoto, M, Hibi, H, Miyake, K, Tomoda, Y. Successful in vitro fertilization and pregnancy by micromanipulation with epididymal sperm. J Assis Reprod Gen 1994; 11: 452–8.CrossRefGoogle ScholarPubMed
43Chen, CS, Chu, SH, Soong, YK, Lai, YM. Epididymal sperm aspiration with assisted reproductive techniques: difference between congenital and acquired obstructive azoospermia. Hum Reprod 1995; 10: 1104–8.CrossRefGoogle ScholarPubMed
44Moore, HDM, Curry, M, Pryor, JP. In vitro culture of epididymal epithelium for the study of mammalian sperm maturation. In: Lauria, A, Gandolfi, F eds. In vitro approaches to mammalian gamete maturation and embryo development. Rome: Serovet; 1989: 110.Google Scholar
45Cooper, TG. In defence of a function for human epididymis. Fertil Steril 1990; 54: 965–75.Google ScholarPubMed
46Bedford, JM. The bearing of epididymal function in strategies for in vitro fertilization and gamete intrafallopian transfer. Ann NY Acad Sei 1988; 541: 284–91.CrossRefGoogle ScholarPubMed
47Seligman, J, Kosower, S, Shalgj, R. Effects of caput ligation on rat sperm and epididymis: protein thiols and fertilizing ability. Biol Reprod 1992; 46: 308–11.CrossRefGoogle ScholarPubMed
48Lacham-Kaplam, O. Intracytoplasmic sperm injection in mice. Fertilization using sperm microinjection in the mouse and in the human. PhD Thesis, Monash University, 1996: 140–60.Google Scholar
49Schlegel, PN, Berkeley, AS, Cohen, JC et al. Epididymal micropuncture with in vitro fertilization and oocyte micromanipulation for the treatment of unreconstructable obstructive azoospermia. Fertil Steril 1994; 5: 895901.CrossRefGoogle Scholar
50Lacham-Kaplam, O, Trounson, A. Micromanipulation assisted fertilization: comparison of different techniques. In: Tesarik, J ed. Male factor in human infertility. Rome: Ares-Serono Symposia Publications; 1994: 287304.Google Scholar
51Son, IP, Hong, JY, Lee, YS et al. Efficacy of microsurgical epididymal sperm aspiration (MESA) and intracytoplasmic sperm injection (ICSI) in obstructive azoospermia. J Assist Reprod Gen 1996; 13: 6972.CrossRefGoogle Scholar
52Tournaye, H, Devroey, P, Liu, J et al. Microsurgical epididymal sperm aspiration and intracytoplasmic sperm injection: a new effective approach to infertility as a result of congenital bilateral absence of the vas deferens. Fertil Steril 1994; 61: 1045–51.CrossRefGoogle ScholarPubMed
53Van Steirteghem, AC, Liu, J, Joris, H et al. Assisted fertilization by subzonal insemination and intraocytoplasmic sperm injection. Reprod Fertil Dev 1994; 6: 8591.Google ScholarPubMed
54Van Steirteghem, AC, Nagy, Z, Liu, J et al. Intraocytoplasmic sperm injection. Reprod Med Rev 1994; 3: 199207.CrossRefGoogle Scholar
55Hovatta, O, Moilanen, J, von Smitten, K, Reima, I. Testicular needle biopsy, open biopsy, epididymal aspiration and intracytoplasmic sperm injection in obstructive azoospermia. Hum Reprod 1995; 10: 2595–9.Google ScholarPubMed
56Kim, SJ, Han, HD. In vitro retrieval of epididymal sperm: a new approach to achievement of pregnancy for post-testicular azoospermia. Fertil Steril 1995; 63: 656–9.CrossRefGoogle ScholarPubMed
57Kahraman, S, Ozgur, S, Alatas, C et al. High implantation rates with testicular sperm extraction and intracytoplasmic sperm injection in obstructive and non-obstructive azoospermia. Hum Reprod 1996; 11: 673–6.CrossRefGoogle ScholarPubMed
58Mansour, RT, Aboulghar, MA, Serour, GI, Fahmi, I, Ramzy, AM, Amin, Y. Intracytoplasmic sperm injection using microsurgically retrieved epididymal and testicular sperm. Fertil Steril 1996; 65: 566–72.CrossRefGoogle ScholarPubMed
59Goto, K, Kinoshita, A, Nakanishi, Y, Ogawa, K. Blastocyst formation following intracytoplasmic injection of in-vitro derived spermatids into bovine oocytes. Hum Reprod 1996; 11: 824–9.CrossRefGoogle ScholarPubMed
60Yanagida, K, Bedford, JM, Yanagimachi, R. Cleavage of rabbit eggs after microsurgical injection of testicular spermatozoa. Hum Reprod 1991; 6: 277–9.CrossRefGoogle ScholarPubMed
61Schoysman, R, Vanderzwalmen, P, Nijs, M et al. Pregnancy obtained with human testicular spermatozoa in an in vitro fertilization program. J Androl 1994; 15: 10S13S.CrossRefGoogle Scholar
62Abuzaid, MI, Chan, YM, Sasy, MA, Basata, S, Beer, M. Fertilization and pregnancy achieved by intracytoplasmic injection of sperm retrieved from testicular biopsy. Fertil Steril 1995; 64: 644–6.CrossRefGoogle Scholar
63Craft, I, Tsirigotis, M, Bennett, V et al. Percutaneous epididymal sperm aspiration and intracytoplasmic sperm injection in the management of infertility due to obstructive azoospermia. Fertil Steril 1995; 63: 1038–42.CrossRefGoogle ScholarPubMed
64Nagy, ZP, Liu, J, Cecile, J, Silber, S, Devroey, P, Van Steirteghem, A. Using ejaculated, fresh and frozen-thawed epididymal and testicular spermatozoa gives rise to comparable results after intracytoplasmic sperm injection. Fertil Steril 1995; 63: 808–15.CrossRefGoogle ScholarPubMed
65Palermo, DG, Cohen, J, Alikani, M, Alder, A, Rosenwaks, Z. Development and implantation of intracytoplasmic sperm injection (ICSI). Reprod Fertil Dev 1995; 7: 211–18.CrossRefGoogle Scholar
66Girardi, S, Achlegel, PN. Microsurgical epididymal sperm aspiration: review of techniques, preoperative considerations and results. J Androl 1996; 17: 59.CrossRefGoogle Scholar
67Khalifa, Y, Gruzinskas, JG. Microepididymal sperm aspiration or percutaneous epididymal sperm aspiration (?). The dilemma. Hum Reprod 1996; 11: 680–4.CrossRefGoogle ScholarPubMed
68Devroey, P, Nagy, P, Tournaye, H, Liu, J, Silber, S, Van Steirteghem, A. Outcome of intracytoplasmic sperm injection with testicular spermatozoa in obstructive and non-obstructive azoospermatia. Hum Reprod 1996; 11: 1015–18.CrossRefGoogle Scholar
69Silber, SJ, Van Steirteghem, AC, Liu, J, Nagy, Z, Tournaye, H, Devroey, P. High fertilization and pregnancy rate after intracytoplasmic sperm injection with spermatozoa obtained from testicular biopsy. Hum Reprod 1995; 10: 148–52.CrossRefGoogle Scholar
70Ng, SC, Solter, D. Fusion of male germ cells form male pronucleus to pachytene spermatocyte with metaphase II oocyte in mice. Mol Androl 1992; 4: 263–76.Google Scholar
71Lacham-Kaplan, O, Valiotis, MC, Trounson, A. Development of mouse embryos after fusion of oocytes with testicular round spermatids. Theriogenology 1994; 41: 232.CrossRefGoogle Scholar
72Sofikitis, N, Toda, T, Miyagawa, I, Zvos, PM, Pasyianos, P, Mastelou, E. Beneficial effects of electrical stimulation before round spermatid nuclei injections into rabbit oocytes on fertilization and subsequent embryonic development. Fertil Steril 1996; 65: 176–85.CrossRefGoogle ScholarPubMed
73Perreault, SD, Zirkin, BR. Sperm nuclear decondensation in mammals: role of sperm associated proteinase in vivo. J Exp Zool 1982; 224: 253–7.CrossRefGoogle ScholarPubMed
74Ogura, A, Yanagimachi, R. Round spermatid nuclei injected into hamster oocytes form pronuclei and participate in syngamy. Biol Reprod 1993; 48: 219–25.CrossRefGoogle Scholar
75Ogura, A, Yanagimachi, R. Spermatids as male gametes. Reprod Fertil Dev 1995; 7: 155–9.CrossRefGoogle ScholarPubMed
76Ogura, A, Matsuda, J, Yanagimachi, R. Birth of normal young after electrofusion of mouse oocytes with round spermatids. Proc Natl Acad Sei USA 1994; 91: 7460–2.CrossRefGoogle ScholarPubMed
77Naish, SJ, Perreault, SD, Zirkin, BR. DNA synthesis following microinjection of heterologous sperm and somatic cell nuclei into hamster oocytes. Gamete Res 1987; 18: 109–20.CrossRefGoogle ScholarPubMed
78Uehara, T, Yanagimachi, R. Microsurgical injection of spermatozoa into hamster eggs with subsequent transformation of sperm nuclei into male pronuclei. Biol Reprod 1976; 15: 467–70.CrossRefGoogle ScholarPubMed
79Perreault, SD, Naish, SJ, Zirkin, BR. The timing of hamster sperm nuclear decondensation and male pronucleus formation is related to sperm nuclear disulfide bond content. Biol Reprod 1987; 36: 239–44.CrossRefGoogle ScholarPubMed
80Kato, Y, Tsunoda, Y. Germ cell nuclei of male fetal mice can support development of chimeras to midgestation following serial transplantation. Development 1995; 121: 779–83.CrossRefGoogle ScholarPubMed
81Ogura, A, Yamamoto, Y, Suzuki, O, Takano, K, Wakayama, T, Mochida, K, Kimura, H. In vitro fertilization and microinsemination with round spermatids for propagation of nephrotic genes in mice. Theriogenology 1996; 45: 1141–9.CrossRefGoogle ScholarPubMed
82Sofikitis, N, Miyagawa, I, Agapitos, E et al. Reproductive capacity of the nucleus of the male gamete after completion of meiosis. J Assist Reprod Genet 1994; 11: 335–41.CrossRefGoogle ScholarPubMed
83Vanderzwalmen, P, Lejeune, B, Nijs, M, Segal-Bertin, G, Vandamme, B, Schoysman, R. Fertilization of an oocyte microinseminated with spermatid in an in-vitro fertilization programme. Hum Reprod 1995; 10: 502–3.CrossRefGoogle Scholar
84Chen, SU, Ho, HN, Chen, FH, Tsai, TC, Lee, TY, Yang, YS. Fertilization and embryo cleavage after intracytoplasmic spermatid injection in an obstructive azoospermic patient with defective spermatogenesis. Fertil Steril 1996; 66: 157–60.CrossRefGoogle Scholar
85Fishel, S, Green, S, Bishop, M, Thornton, S, Hunter, A, Flening, S, Al-Hassan, S. Pregnancy after intracytoplasmic injection of spermatid. Lancet 1995; 345: 1641–2.CrossRefGoogle ScholarPubMed
86Tesarik, J, Mendoza, C, Testart, J. Viable embryos from injection of round spermatids into oocytes. N Engl J Med 1995; 333: 525.CrossRefGoogle ScholarPubMed
87Tesarik, J, Mendoza, C. Spermatid injection into human oocytes. I. Laboratory techniques and special features of zygote development. Hum Reprod 1996; 11: 772–9.CrossRefGoogle ScholarPubMed
88Tesarik, J, Rolet, F, Brami, C et al. Spermatid injection into human oocytes. II. Clinical application in the treatment of infertility due to non-obstructive azoospermia. Hum Reprod 1996; 11: 780–3.CrossRefGoogle ScholarPubMed
89Patrizio, P. Intracytoplasmic sperm injection (ICSI): potential genetic concerns. Hum Reprod 1995; 10: 2520–3.CrossRefGoogle ScholarPubMed
90Kahraman, S, Vicdan, K, Ozgur, S et al. High fertilization rate with spermatid stage spermatozoa with testicular sperm extraction and ICSI in a non-obstructive azoospermic couple: a case report [Abstract]. Hum Reprod 1996; 11: Abstract book 1, p085.Google Scholar
91Schatten, H, Schatten, G, Mazia, D, Balczon, R, Simerly, C. Behaviour of centrosomes during fertilization and cell division in mouse oocytes and in sea urchin eggs. Proc Natl Acad Sei USA 1986; 83: 105–9.CrossRefGoogle ScholarPubMed
92Schatten, G, Simerly, C, Schatten, H. Maternal inheritance of centrosomes in mammals? Studies on parthenogenesis and polyspermy in mice. Proc Natl Acad Sci USA 1991; 88: 6785–9.CrossRefGoogle ScholarPubMed
93Schatten, G. The centresome and its mode of inheritance: the reduction of the centrosome during gametogenesis and its restoration during fertilization. Dev Biol 1994; 165: 299335.CrossRefGoogle ScholarPubMed
94Sathananthan, AH, Kola, I, Osborn, J et al. Centrioles in the beginning of human development. Proc Natl Acad Sci USA 1991; 88: 4806–10.CrossRefGoogle ScholarPubMed
95Palermo, G, Munne, S, Cohen, J. The human zygote inherits its mitotic potential from the male gamete. Hum Reprod 1994; 9: 1220–5.CrossRefGoogle ScholarPubMed
96Sathananthan, AH, Ratnam, SS, Ng, SC, Tarin, JJ, Gianaroli, L, Trounson, A. The sperm centriole: its inheritance, replication and perpetuation in early human embryos. Hum Reprod 1996; 11: 345–56.CrossRefGoogle ScholarPubMed
97Simerly, C, Wu, GJ, Zora, S et al. The paternal inheritance of the centrosome, the cell's microtubule-organising center, in humans and the implications for infertility. Nature Med 1995; 1: 4752.CrossRefGoogle Scholar
98Van Blerkom, J, Davis, P. Evolution of the sperm aster after microinjection of isolated human sperm centrosomes into meiotically mature human oocytes. Hum Reprod 1995; 10: 2179–82.CrossRefGoogle ScholarPubMed
99Edwards, RG, Tarin, JJ, Dean, N, Tan, SL. Are spermatid injections into human oocytes now mandatory. Hum Reprod 1994; 9: 2217–19.CrossRefGoogle ScholarPubMed
100Butler, D. Spermatid injection fertilizes ethics debate. Nature 1995; 377: 277.CrossRefGoogle ScholarPubMed
101Fishel, S, Aslam, I, Tesarik, J. Spermatid conception: a stage too early, or a time too soon. Hum Reprod 1996; 11: 1371–5.CrossRefGoogle ScholarPubMed
102Meschede, D, DeGeyter, C, Nieschlag, E, Horst, J. Genetic risk in micromanipulative assisted reproduction. Hum Reprod 1995; 10: 2880–6.CrossRefGoogle ScholarPubMed
103De Kretser, DM. The potential of intracytoplasmic sperm injection (ICSI) to transmit genetic defects causing male infertility. Reprod Fertil Dev 1995; 7: 137–42.Google ScholarPubMed
104Chandley, AC. The genetic basis of male infertility. Reprod Med Rev 1995; 4: 18.CrossRefGoogle Scholar
105Patrizio, P, Asch, HR, Handlin, B, Silber, S. Aetiology of congenital absence of vas deference: genetic study of three generations. Hum Reprod 1993; 8: 215–20.CrossRefGoogle Scholar
106Patrizio, P, Ord, T, Silber, JS, Asch, HR. Cystic fibrosis mutations impair the fertilization rate of epididymal sperm from men with congenital absence of the vas deferens. Hum Reprod 1993; 8: 1259–63.CrossRefGoogle ScholarPubMed
107Mickle, J, Milunsky, A, Amos, JA, Oates, RD. Congenital unilateral absence of the vas deferens: a heterogeneous disorder with two distinct subpopulations based upon aetiology and mutational status of the cystic fibrosis gene. Hum Reprod 1995; 10: 1728–35.CrossRefGoogle ScholarPubMed
108Silber, S, Nagy, Z, Liu, J et al. The use of epididymal and testicular spermatozoa for intracytoplasmic sperm injection: the genetic implications for male infertility. Hum Reprod 1995; 10: 2131–43.CrossRefGoogle ScholarPubMed
109Persson, J, Peters, GB, Saunders, DM. Is ICSI associated with risks of genetic disease? Implications for counselling, practice and research. Hum Reprod 1996; 11: 921–4.CrossRefGoogle ScholarPubMed
110Martin, RH. The risk of chromosomal abnormalities following ICSI. Hum Reprod 1996; 11: 924–5.CrossRefGoogle ScholarPubMed
111Bui, The-H, Wramsby, H. Micromanipulative assisted fertilization – still clinical research. Hum Reprod 1996; 11: 925–6.CrossRefGoogle ScholarPubMed
112Baschat, AA, Schwinger, E, Dietrich, K. Assisted reproductive techniques – are we avoiding the genetic issues. Hum Reprod 1996; 11: 926–8.CrossRefGoogle ScholarPubMed
113Rosenbusch, B, Strehler, E, Sterzik, K. Microassisted fertilization and sperm chromosome abnormalities. Hum Reprod 1996; 11: 928–30.CrossRefGoogle ScholarPubMed
114Chandley, AC, Hargreave, TB. Genetic anomaly and ICSI. Hum Reprod 1996; 11: 930–2.CrossRefGoogle ScholarPubMed
115Bondulle, M, Legein, J, Willikens, A et al. Followup study of children born after intracytoplasmic sperm injection [Abstract]. Hum Reprod 1995; 10: abstract 108.Google Scholar
116Tournaye, H, Liu, J, Nagy, Z et al. Intracytoplasmic sperm injection (ICSI): the Brussels experience. Reprod Fertil Dev 1995; 7: 269–79.CrossRefGoogle ScholarPubMed
117In't, Veld P, Brandenburg, H, Verhoeff, A, Dhont, M, Los, F. Sex chromosomal abnormalities and intracytoplasmic sperm injection. Lancet 1995; 346: 773.CrossRefGoogle Scholar
118Solter, D. Differential imprinting and expression of maternal and paternal genomes. Annu Rev Genet 1988; 22: 127–46.CrossRefGoogle ScholarPubMed
119Monk, M. Gametic imprinting. Genes Dev 1988; 2: 921–5.CrossRefGoogle Scholar
120Ueda, T, Yamazaki, K, Sizuki, R, Fujimoto, H, Sasaki, Y, Higashinakagawa, T. Parental methylation patterns of a transgenic locus in adult somatic tissue are imprinted during gametogenesis. Development 1992; 116: 831–9.CrossRefGoogle ScholarPubMed
121Reik, W. Genomic imprinting and genetic disorders in man. Hum Genet Dis 1989; 5: 331–6.Google ScholarPubMed
122Hall, JG. Genomic imprinting: review and relevance to human disease. Am J Hum Genet 1990; 46: 857–73.Google Scholar
123Henry, I, Bonaiti-Pellie, C, Chehensse, V et al. Uniparental dismosy in a genetic cancerpredisposing syndrome. Nature 1991; 351: 665–7.CrossRefGoogle Scholar
124Woods, CG, Danks, DM. The role of genomic imprinting. Med J Aust 1993; 158: 801–2.CrossRefGoogle ScholarPubMed
125Deng, ZM, Woodage, T, Smart, R, Smith, A, Trent, RJ. Novel patterns of inheritance of genetic disease are illustrated by the Angelman syndrome. Med J Aust 1993; 158: 813–16.CrossRefGoogle ScholarPubMed
126Wilkins, RJ. Genomic imprinting and carcinogenesis. Lancet 1988; 1: 329–30.CrossRefGoogle ScholarPubMed
127Leighton, PA, Saam, JR, Ingram, RS, Tilghman, SM. Genomic imprinting in mice: its function and mechanism. Biol Reprod 1996; 54: 273–8.CrossRefGoogle ScholarPubMed
128Barlow, DP. Methylation and imprinting: from host defence to gene regulation. Science 1993; 260: 309–10.CrossRefGoogle ScholarPubMed
129Li, E, Beard, C, Jaenisch, R. Role of DNA methylation in genomic imprinting. Nature 1993; 366: 362–5.CrossRefGoogle ScholarPubMed
130Surani, AM. Silence of the genes. Nature 1993; 336: 302–3.CrossRefGoogle Scholar
131Jue, K, Bestor, TH, Traler, JM. Regulated synthesis and localization of DNA methyltransferase during spermatogenesis. Biol Reprod 1995; 53: 561–9.CrossRefGoogle ScholarPubMed
132Ariel, M, Cedar, H, Mccarrey, J. Developmental changes in methylation of spermatogenesis-specific genes induce reprogramming in the epididymis. Nature Gen 1994; 7: 5963.CrossRefGoogle Scholar
133Kafri, T, Ariel, M, Brandeis, M et al. Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line. Genet Dev 1992; 6: 705–14.CrossRefGoogle ScholarPubMed
134Kafri, T, Gao, X, Razin, A. Mechanistic aspects of genome-wide demethylation in the preimplantation mouse embryo. Proc Natl Acad Sci USA 1993; 90: 10558–62.CrossRefGoogle ScholarPubMed
135Howlett, SK, Reik, W. Methylation levels of maternal and paternal genomes during preimplantation development. Development 1991; 113: 119–27.CrossRefGoogle ScholarPubMed
136Ng, SC, Liow, SL, Ahmadi, A, Yong, EL, Bongso, A, Ratnam, SS. Intracytoplasmic sperm injection is there a need for an animal model, especially in assessing the genetic risks involved. Hum Reprod 1995; 10: 2523–5.CrossRefGoogle Scholar
137Yanagimachi, R. Is an animal model needed for intracytoplasmic sperm injection (ICSI) and other assisted reproduction technologies. Hum Reprod 1995; 10: 2525–6.CrossRefGoogle ScholarPubMed