Hostname: page-component-857557d7f7-nfgnx Total loading time: 0.001 Render date: 2025-12-01T05:47:42.599Z Has data issue: false hasContentIssue false

Design and implementation of an open-source, low-cost remote-controlled tiny humanoid robot for accessible robotics applications

Published online by Cambridge University Press:  01 December 2025

Marcos Eduardo Pivaro Monteiro*
Affiliation:
Federal University of Technology - Paraná, Curitiba, Paraná, Brazil INESC P&D Brazil, Santos, São Paulo, Brazil
Eduardo Nunes dos Santos
Affiliation:
Federal University of Technology - Paraná, Curitiba, Paraná, Brazil
Daniel Fernando Pigatto
Affiliation:
Federal University of Technology - Paraná, Curitiba, Paraná, Brazil
Joilson Alves Junior
Affiliation:
Federal University of Technology - Paraná, Curitiba, Paraná, Brazil
Leonardo Lira Ramalho
Affiliation:
Federal University of Pará, Belém, Pará, Brazil INESC P&D Brazil, Santos, São Paulo, Brazil
Diego Issicaba
Affiliation:
Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil INESC P&D Brazil, Santos, São Paulo, Brazil
*
Corresponding author: Marcos Eduardo Pivaro Monteiro; Email: marcose@utfpr.edu.br

Abstract

This paper presents the design and implementation of Jaeger UTFPR, an open-source, low-cost, remote-controlled tiny humanoid robot measuring just 12 cm in height. Developed with a focus on accessibility and affordability, the robot integrates 3D-printed components, cost-effective electronics, embedded systems, and wireless communication to provide real-time audio and video feedback through a virtual reality (VR) interface. Operators control Jaeger UTFPR using a VR headset and motion controllers, enabling immersive telepresence and direct manipulation of the robot’s movements. With a total cost of just a few tens of dollars, this innovative solution offers broad applications in education, entertainment, research, and remote inspection, serving as an accessible platform for robotics enthusiasts and developers. Experimental evaluations demonstrate the system’s effectiveness in balancing performance and cost, validating its potential as a tool for immersive robotics experiences.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

McCartney, G. and McCartney, A., “Rise of the machines: Towards a conceptual service-robot research framework for the hospitality and tourism industry,” Int. J. Contemp. Hosp. Manag. 32(12), 38353851 (2020).CrossRefGoogle Scholar
McLeay, F., Osburg, V. S., Yoganathan, V. and Patterson, A., “Replaced by a robot: Service implications in the age of the machine,” J. Serv. Res. 24(1), 104121 (2021).10.1177/1094670520933354CrossRefGoogle Scholar
Yoganathan, V., Osburg, V.-S., Kunz, W. H. and Toporowski, W., “Check-in at the robo-desk: Effects of automated social presence on social cognition and service implications,” Tour. Manag. 85, 104309 (2021).10.1016/j.tourman.2021.104309CrossRefGoogle Scholar
Asghar, A., Patra, A. and Ravi, K. S., “The potential scope of a humanoid robot in anatomy education: A review of a unique proposal,” Surg. Radiol. Anat. 44(10), 13091317 (2022).CrossRefGoogle ScholarPubMed
Steil, J. J., Röthling, F., Haschke, R. and Ritter, H., “Situated robot learning for multi-modal instruction and imitation of grasping,” Robot. Auton. Syst. 47(2-3), 129141 (2004).CrossRefGoogle Scholar
Taga, G., “Global entrainment in the brain–body–environment: Retrospective and prospective views,” Biol. Cybern. 115(5), 431438 (2021).CrossRefGoogle ScholarPubMed
Reil, T. and Husbands, P., “Evolution of central pattern generators for bipedal walking in a real-time physics environment,” IEEE Trans. Evol. Comput. 6(2), 159168 (2002).CrossRefGoogle Scholar
Sugihara, T. and Morisawa, M., “A survey: Dynamics of humanoid robots,” Adv. Robot. 34(21-22), 13381352 (2020).CrossRefGoogle Scholar
Tong, Y., Liu, H. and Zhang, Z., “Advancements in humanoid robots: A comprehensive review and future prospects,” IEEE/CAA J. Autom. Sin. 11(2), 301328 (2024).CrossRefGoogle Scholar
Zacharia, P. T. and Xidias, E. K., “Optimal robot task scheduling in cluttered environments considering mechanical advantage,” Robotica 42(9), 32303246 (2024).CrossRefGoogle Scholar
Khan, M. S. and Mandava, R. K., “A review on gait generation of the biped robot on various terrains,” Robotica 41(6), 18881930 (2023).10.1017/S0263574723000097CrossRefGoogle Scholar
Xia, H., Li, Z., Chen, G., Qiao, H. and Dai, J. S., “Intelligence in robotics for computer, engineering, and applied sciences,” Robotica 42(7), 20852088 (2024).10.1017/S0263574724000924CrossRefGoogle Scholar
Lv, Z., Wang, Y., Zhang, G. and Wang, X., “Determination method of limit interpolation points in industrial robot control system,” Robotica 43(4), 15331547 (2025).CrossRefGoogle Scholar
Szczurek, K. A., Prades, R. M., Matheson, E., Rodriguez-Nogueira, J. and Castro, M. D., “Multimodal multi-user mixed reality human–robot interface for remote operations in hazardous environments,” IEEE Access 11, 1730517333 (2023).CrossRefGoogle Scholar
Goodrich, M. and Schultz, A., “Human–Robot Interaction: A Survey,” In: Foundations and Trends in Human-Computer Interaction, Now Publishers Inc., vol. 1 (2007) pp. 203275.Google Scholar
Gallipoli, M., Buonocore, S., Selvaggio, M., Fontanelli, G. A., Grazioso, S. and Di Gironimo, G., “A virtual reality-based dual-mode robot teleoperation architecture,” Robotica 42(6), 19351958 (2024).CrossRefGoogle Scholar
Sobrepera, M. J., Nguyen, A. T., Gavin, E. S. and Johnson, M. J., “Insights into the deployment of a social robot-augmented telepresence robot in an elder care clinic – perspectives from patients and therapists: A pilot study,” Robotica 42(5), 13211349 (2024).CrossRefGoogle Scholar
Tachi, S., Telexistence , 2nd ed. (World Scientific Publishing Company, Singapore, 2015).CrossRefGoogle Scholar
Darvish, K., Penco, L., Ramos, J., Cisneros, R., Pratt, J., Yoshida, E., Ivaldi, S. and Pucci, D., “Teleoperation of humanoid robots: A survey,” IEEE Trans. Robot. 39(3), 17061727 (2023).CrossRefGoogle Scholar
Fujita, M., Kuroki, Y., Ishida, T. and T, “A Small Humanoid Robot SDR-4X for Entertainment Applications,” In: Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003), IEEE, vol. 2 (2003) pp. 938943.CrossRefGoogle Scholar
Lapeyre, M., Rouanet, P. and Oudeyer, P.-Y., “The Poppy Humanoid Robot: Leg Design for Biped Locomotion,” In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE (2013) pp. 349356.CrossRefGoogle Scholar
Lapeyre, M., N’Guyen, S., Falher, A. L. and Oudeyer, P.-Y., “Rapid morphological exploration with the poppy humanoid platform,” In: 2014 IEEE-RAS International Conference on Humanoid Robots, IEEE, (2014) pp. 155160.Google Scholar
Fuge, A. J., Herron, C. W., Beiter, B. C., Kalita, B. and Leonessa, A., “Design, development, and analysis of the lower body of next-generation 3D-printed humanoid research platform: PANDORA,” Robotica 41(7), 21772206 (2023).CrossRefGoogle Scholar
Kim, J. Y., Kashino, Z., Colaco, T., Nejat, G. and Benhabib, B., “Design and implementation of a millirobot for swarm studies – mROBerTO ,” Robotica 36(11), 15911612 (2018).CrossRefGoogle Scholar
de Paula, D. T., Godoy, E. P. and Becerra-Vargas, M., “Dynamic modeling and simulation of a torque-controlled spatial quadruped robot,” Robotica 42(8), 27612780 (2024).CrossRefGoogle Scholar
Müller, A., Brandstötter, M., Romdhane, L. and Gasparetto, A., “Editorial to the special issue on “Modeling and control of innovative robots”,” Robotica 42(6), 17101711 (2024).CrossRefGoogle Scholar
Li, J., Liu, C., Nguyen, K. and McCarthy, J. M., “A steerable robot walker driven by two actuators,” Robotica 42(12), 40194035 (2024).CrossRefGoogle Scholar
Liang, L., Xu, Y., Han, L. and Liu, Y., “System design and control of the sphere-wheel-legged robot,” Robotica 42(10), 33633379 (2024).10.1017/S0263574724001401CrossRefGoogle Scholar
Arif, M. A., Zhu, A., Mao, H. and Tu, Y., “Panoramic visual system for spherical mobile robots,” Robotica 42(7), 20892107 (2024).CrossRefGoogle Scholar
Selvi, O., Cindioglu, C., Ider, S. K. and Ceccarelli, M., “Kinematic design and analysis of a novel overconstraint walking mechanism,” Robotica 43(4), 121 (2025).CrossRefGoogle Scholar
Fukuda, T., Dobashi, H., Nagano, H., Tazaki, Y., Katayama, R. and Yokokohji, Y., “Jigless assembly of an industrial product by a universal robotic hand mounted on an industrial robot,” Robotica 41(8), 24642488 (2023).10.1017/S0263574723000474CrossRefGoogle Scholar
Ojer, M., Etxezarreta, A., Kortaberria, G., Ahmed, B., Flores, J., Hernandez, J., Lazkano, E. and Lin, X., “High accuracy hybrid kinematic modeling for serial robotic manipulators,” Robotica 42(9), 32113229 (2024).CrossRefGoogle Scholar
Almeida, L., Santos, V. and Ferreira, J., “Enhancement of humanoid robot locomotion on slippery floors using an adaptive controller,” Robotica 42(4), 10551073 (2024).10.1017/S0263574724000080CrossRefGoogle Scholar
Li, J., Cong, D., Yang, Y. and Yang, Z., “A hydraulic actuator for joint robots with higher torque to weight ratio,” Robotica 41(2), 756774 (2023).CrossRefGoogle Scholar
M. E. P. Monteiro, “Jaeger UTFPR Repository: Source code for robotic control” (2024). Accessed 28 May 2025. Available at: https://github.com/TechnologicalCraftsmanship/JaegerUTFPR.Google Scholar
A. Payne, “Downsizing (Motion Picture)” (2017). Accessed 24 November 2025. Available at: https://www.imdb.com/title/tt1389072/.Google Scholar
Raptis, I. and Sullivan, B., “Arachne system: An accessible miniaturized mobile multi-robot platform,” Robotica 43(7), 26102643 (2025).CrossRefGoogle Scholar
OmniVision Technologies Inc., “OV2640 Color CMOS UXGA (2.0 MegaPixel) CameraChip Datasheet (v. 1.6)” (2006). Accessed 28 May 2025. Available at: https://www.datasheetbank.com/preview/OV2640-OMNIVISION-V2.Google Scholar
Alibaba Group, “Alibaba E-commerce Platform: Global Trade Marketplace” (2025). Accessed 28 May 2025. Available at: https://www.alibaba.com/.Google Scholar
Mouser Electronics, “Electronic Components Distributor Catalog” (2025). Accessed 28 May 2025. Available at: https://www.mouser.com/.Google Scholar
PCBWay, “PCBWay - PCB prototype” (2025). Accessed 28 May 2025. Available at: https://www.pcbway.com/.Google Scholar
Unitree Robotics, “Unitree R1: Humanoid Robot Platform Specifications” (2024). Accessed 23 August 2024. Available at: https://www.unitree.com/R1.Google Scholar
G. Langevin, “InMoov: Open Source 3D Printed Life-Size Robot” (2012). Accessed 23 August 2024. Available at: https://inmoov.fr/.Google Scholar