Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-10T13:41:15.363Z Has data issue: false hasContentIssue false

A compliant leg design combining pantograph structure with leaf springs

Published online by Cambridge University Press:  07 November 2023

Boxing Wang
Affiliation:
State Key Laboratory of Multimodal Artificial Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, China
Kunting Zhang
Affiliation:
State Key Laboratory of Multimodal Artificial Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, China
Xueyan Ma
Affiliation:
State Key Laboratory of Multimodal Artificial Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, China
Lihao Jia*
Affiliation:
State Key Laboratory of Multimodal Artificial Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, China
*
Corresponding author: Lihao Jia; Email: lihao.jia@ia.ac.cn

Abstract

We proposed a compliant leg configuration that enhances the conventional pantograph design with leaf springs. The following facts characterize the proposed configuration: (1) Due to the use of the pantograph structure, the mass is centralized around the hip joint, reducing the lower leg inertia; (2) Leaf springs are chosen as elastic parts to increase energy efficiency and estimate foot-end contact forces. Compared with coil springs, leaf springs require no guide rails to deploy, and their stiffness can be easily adjusted through shape cutting. Analytical models are introduced to analyze the leg’s stiffness and estimate the contact forces only with the deflections of leaf springs. A one-leg robot based on the proposed design is built, and various experiments are conducted. Experiments regarding the stiffness calibration and the contact forces estimation showed an acceptable agreement with the analytical model. Experiments of dropping demonstrate the feasibility of the leg to perform spring-like behaviors. Experiments of periodic hopping demonstrate the feasibility of using spring deflections to detect touch-down events. For energy efficiency, it is also observed that the elastic leg has a 20% increment concerning the jumping height in the flight phase, compared with the one where leaf springs are replaced with rigid materials.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boston Dynamics, Atlas, Boston Dynamics (2022). https://www.bostondynamics.com/atlas.Google Scholar
Radford, N. A., Strawser, P., Hambuchen, K., Mehling, J. S., Verdeyen, W. K., Donnan, A. S., Holley, J., Sanchez, J., Nguyen, V., Bridgwater, L., Berka, R., Ambrose, R., McQuin, C., Yamokoski, J. D., Hart, S., Guo, R., Parsons, A., Wightman, B., Dinh, P., Ames, B., Blakely, C., Edmonson, C., Sommers, B., Rea, R., Tobler, C., Bibby, H., Howard, B., Nui, L., Lee, A., Conover, M., Truong, L., Chesney, D., Platt, R. Jr., Johnson, G., Fok, C. L., Paine, N., Sentis, L., Eric, Cousineau, Sinnet, R., Lack, J., Powell, M., Morris, B. and Ames, A., “Valkyrie: Nasa’s first bipedal humanoid robot,” J. Field Robot. 32(3), 397419 (2015).CrossRefGoogle Scholar
Kajita, S., Benallegue, M., Cisneros, R., Sakaguchi, T., Morisawa, M., Kaminaga, H., Kumagai, I., Kaneko, K. and Kanehiro, F., “Position-based Lateral Balance Control for Knee-Stretched Biped Robot,” IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids) (IEEE, 2019) pp. 1724.10.1109/Humanoids43949.2019.9035077CrossRefGoogle Scholar
Semini, C., Barasuol, V., Focchi, M., Boelens, C., Emara, M., Casella, S., Villarreal, O., Orsolino, R., Fink, G., Fahmi, S., Medrano-Cerda, G. A., Caldwell, D. G., Sangiah, D., Lesniewski, J., Fulton, K., Donadon, M. and Baker, M., “Brief Introduction to the Quadruped Robot Hyqreal,” In: Istituto di Robotica e Macchine Intelligenti (I-RIM) ( 2019).Google Scholar
Gehring, C., Fankhauser, P., Isler, L., Diethelm, R., Bachmann, S., Potz, M., Gerstenberg, L. and Hutter, M., “Anymal in the Field: Solving Industrial Inspection of an Offshore HVDC Platform with a Quadrupedal Robot,” Field and Service Robotics: Results of the 12th International Conference (Springer, 2021) pp. 247260.CrossRefGoogle Scholar
Katz, B., Di Carlo, J. and Kim, S., “Mini Cheetah: A Platform for Pushing the Limits of Dynamic Quadruped Control,” International Conference on Robotics and Automation (ICRA)(IEEE, 2019) pp. 62956301.10.1109/ICRA.2019.8793865CrossRefGoogle Scholar
Beckerle, P., Verstraten, T., Mathijssen, G., Furnémont, R., Vanderborght, B. and Lefeber, D., “Series and parallel elastic actuation: Influence of operating positions on design and control,” IEEE/ASME Trans. Mechatron. 22(1), 521529 (2016).CrossRefGoogle Scholar
Hurst, J. W., “The Role and Implementation of Compliance in Legged Locomotion (Carnegie Mellon University, Pittsburgh, PA, 2008).Google Scholar
Rummel, J., Blum, Y., Maus, H. M., Rode, C. and Seyfarth, A., “Stable and Robust Walking with Compliant Legs,” 2010 IEEE International Conference on Robotics and Automation (IEEE, 2010) pp. 52505255.10.1109/ROBOT.2010.5509500CrossRefGoogle Scholar
Verstraten, T., Beckerle, P., Furnémont, R., Mathijssen, G., Vanderborght, B. and Lefeber, D., “Series and parallel elastic actuation: Impact of natural dynamics on power and energy consumption,” Mech Mach Theory 102, 232246 (2016).CrossRefGoogle Scholar
Rezazadeh, S., Abate, A., Hatton, R. L. and Hurst, J. W., “Robot leg design: A constructive framework,” IEEE Access 6, 5436954387 (2018).CrossRefGoogle Scholar
Hubicki, C., Grimes, J., Jones, M., Renjewski, D., Spröwitz, A., Abate, A. and Hurst, J., “Atrias: Design and validation of a tether-free 3d-capable spring-mass bipedal robot,” Int. J. Robot. Res. 35(12), 14971521 (2016).CrossRefGoogle Scholar
Hubicki, C., Abate, A., Clary, P., Rezazadeh, S., Jones, M., Peekema, A., Van Why, J., Domres, R., Wu, A., Martin, W., Geyer, H. and Hurst, J., “Walking and running with passive compliance: Lessons from engineering: A live demonstration of the atrias biped,” IEEE Robot. Autom. Mag. 25(3), 2339 (2018).CrossRefGoogle Scholar
Abate, A. M., Mechanical Design for Robot Locomotion Ph.D. Thesis (Oregon State University, 2018).Google Scholar
Chen, Y.-M. and Posa, M., “Optimal Reduced-Order Modeling of Bipedal Locomotion,” IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2020) pp. 87538760.10.1109/ICRA40945.2020.9197004CrossRefGoogle Scholar
Gong, Y., Hartley, R., Da, X., Hereid, A., Harib, O., Huang, J.-K. and Grizzle, J., “Feedback Control of a Cassie Bipedal Robot: Walking, Standing, and Riding a Segway,” American Control Conference (ACC) (IEEE, 2019) pp. 45594566.CrossRefGoogle Scholar
Witte, H., Hackert, R., Lilje, K. E., Schilling, N., Voges, D., Klauer, G., Ilg, W., Albiez, J., Seyfarth, A., Germann, D., Hiller, M., Dillmann, R. and Fischer, M. S., “Transfer of Biological Principles into the Construction of Quadruped Walking Machines,” Proceedings of the Second International Workshop on Robot Motion and Control. RoMoCo’01 (IEEE Cat. No. 01EX535) (IEEE, 2001) pp. 245249.Google Scholar
Spröwitz, A., Tuleu, A., Vespignani, M., Ajallooeian, M., Badri, E. and Ijspeert, A. J., “Towards dynamic trot gait locomotion: Design, control, and experiments with cheetah-cub, a compliant quadruped robot,” Int. J. Robot. Res. 32(8), 932950 (2013).CrossRefGoogle Scholar
Ruppert, F. and Badri-Spröwitz, A., “Series elastic behavior of biarticular muscle-tendon structure in a robotic leg,” Front. Neurorob. 13, 64 (2019).10.3389/fnbot.2019.00064CrossRefGoogle Scholar
Luo, G., Du, R., Zhu, S., Song, S., Yuan, H., Zhou, H., Zhao, M. and Gu, J., “Design and dynamic analysis of a compliant leg configuration towards the biped robot’s spring-like walking,” J. Intell. Robot. Syst. 104(4), 117 (2022).CrossRefGoogle Scholar
Reher, J., Ma, W.-L. and Ames, A. D., “Dynamic Walking with Compliance on a Cassie Bipedal Robot,” 18th European Control Conference (ECC) (IEEE, 2019) pp. 25892595.CrossRefGoogle Scholar
Raspberry Pi Foundation, Raspberry pi 4b specifications (2019). https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications.Google Scholar

Wang et al. supplementary material

Wang et al. supplementary material

Download Wang et al. supplementary material(Video)
Video 26.2 MB