Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-28T03:38:14.276Z Has data issue: false hasContentIssue false

A survey on evolutionary-aided design in robotics

Published online by Cambridge University Press:  17 August 2018

Shanker G. Radhakrishna Prabhu*
Affiliation:
Department of Engineering Science, Faculty of Engineering & Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK. E-mails: r.seals@gre.ac.uk, p.j.kyberd@gre.ac.uk, j.c.wetherall@gre.ac.uk
Richard C. Seals
Affiliation:
Department of Engineering Science, Faculty of Engineering & Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK. E-mails: r.seals@gre.ac.uk, p.j.kyberd@gre.ac.uk, j.c.wetherall@gre.ac.uk
Peter J. Kyberd
Affiliation:
Department of Engineering Science, Faculty of Engineering & Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK. E-mails: r.seals@gre.ac.uk, p.j.kyberd@gre.ac.uk, j.c.wetherall@gre.ac.uk
Jodie C. Wetherall
Affiliation:
Department of Engineering Science, Faculty of Engineering & Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK. E-mails: r.seals@gre.ac.uk, p.j.kyberd@gre.ac.uk, j.c.wetherall@gre.ac.uk
*
*Corresponding author. E-mail: s.prabhu@gre.ac.uk

Summary

The evolutionary-aided design process is a method to find solutions to design and optimisation problems. Evolutionary algorithms (EAs) are applied to search for optimal solutions from a solution space that evolves over several generations. EAs have found applications in many areas of robotics. This paper covers the efforts to determine body morphology of robots through evolution and body morphology with the controller of robots or similar creatures through co-evolution. The works are reviewed from the perspective of how different algorithms are applied and includes a brief explanation of how they are implemented.

Type
Articles
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Darwin, C., The Origin of Species by Means of Natural Selection: Or, the Preservation of Favored Races in the Struggle for Life (John Murray, London, UK, 1859).Google Scholar
2. Mendel, G., “Experiments in Plant Hybridization (1865),” In: Classic Papers in Genetics (Peters, J. E., ed.) (Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1959) (1), pp. 119.Google Scholar
3. Holland, J. H., Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence (MIT Press, Cambridge, MA, USA, 1992).Google Scholar
4. Doncieux, S., Mouret, J. B., Bredeche, N. and Padois, V., “Evolutionary Robotics: Exploring New Horizons,” In: New Horizons in Evolutionary Robotics, vol. 341(1) (Springer, Berlin-Heidelberg, 2011) pp. 325.Google Scholar
5. Nolfi, S. and Floreano, D., Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines (MIT Press, Cambridge, MA, USA, 2000).Google Scholar
6. Nichele, S., “The coevolution of robot controllers (“brains”) and morphologies (“bodies”)–challenges and opportunities,” online, 2015. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.2391&rep=rep1&type=pdf. Accessed Mar. 20, 2017.Google Scholar
7. Vargas, P. A., Di Paolo, E. A., Harvey, I. and Husbands, P., The Horizons of Evolutionary Robotics (MIT Press, Cambridge, MA, USA, 2014).Google Scholar
8. Bongard, J. C., “Evolutionary robotics,” Communications of the ACM 56 (8), 7483 (2013).Google Scholar
9. Taylor, T. and Massey, C., “Recent developments in the evolution of morphologies and controllers for physically simulated creatures,” Artif. Life 7 (1), 7787 (2001).Google Scholar
10. Floreano, D., Mondada, F., Perez-Uribe, A. and Roggen, D., “Evolution of Embodied Intelligence,” In: Embodied Artificial Intelligence, vol. 3139(23) (Springer, Berlin-Heidelberg, 2004) pp. 293311.Google Scholar
11. Lipson, H., “Evolutionary robotics and open-ended design automation,” Biomimetics 17 (9), 139155 (2005).Google Scholar
12. Pfeifer, R., Lungarella, M. and Iida, F., “Self-organization, embodiment, and biologically inspired robotics.,” Science 318 (5853), 10881093 (2007).Google Scholar
13. Winfield, A. F. T. and Timmis, J., “Evolvable Robot Hardware,” In: Evolvable Hardware (13) (Springer, Berlin-Heidelberg, 2015) pp. 331348.Google Scholar
14. Nolfi, S., Bongard, J., Husbands, P. and Floreano, D., “Evolutionary Robotics,” In: Springer Handbook of Robotics, 2nd ed, vol. 236(76), 20352068, (Springer International Publishing, Cham, 2016) pp. 20352068.Google Scholar
15. Eiben, A. E. and Smith, J., “From evolutionary computation to the evolution of things,” Nature 521 (7553), 476482 (2015).Google Scholar
16. Gupta, S. and Singla, E., “Evolutionary robotics in two decades: A review,” Sadhana 40 (4), 11691184 (2015).Google Scholar
17. Nelson, A. L., Barlow, G. J. and Doitsidis, L., “Fitness functions in evolutionary robotics: A survey and analysis,” Rob. Auton. Syst. 57 (4), 345370 (2009).Google Scholar
18. Walker, J., Garrett, S. and Wilson, M., “Evolving controllers for real robots: A survey of the literature,” Adapt. Behav. 11 (3), 179203 (2003).Google Scholar
19. Teo, J., “Darwin+ Robots= Evolutionary Robotics: Challenges in Automatic Robot Synthesis,” Proceedings of the International Conference on Artificial Life (2004) pp. 7–13.Google Scholar
20. Kicinger, R., Arciszewski, T. and De Jong, K., “Evolutionary computation and structural design: A survey of the state-of-the-art,” Comput. Struct. 83 (23), 19431978 (2005).Google Scholar
21. Barca, J. C. and Sekercioglu, Y. A., “Swarm robotics reviewed,” Robotica 31 (3), 345359 (2013).Google Scholar
22. Ahmadzadeh, H., Masehian, E. and Asadpour, M., “Modular Robotic Systems: Characteristics and Applications,” J. Intell. Rob. Syst. 81 (3), 317357 (2016).Google Scholar
23. Alattas, R. J., Patel, S. and Sobh, T. M., “Evolutionary Modular Robotics: Survey and Analysis,” J. Intell. Robot. Syst. (2018). https://doi.org/10.1007/s10846-018-0902-9.Google Scholar
24. Lee, C., Kim, M., Kim, Y. J., Hong, N., Ryu, S., Kim, H. Jin and Kim, S., “Soft robot review,” Int. J. Control Autom. Syst. 15 (1), 113 (2017).Google Scholar
25. Pfeifer, R., Iida, F. and Lungarella, M., “Cognition from the bottom up: on biological inspiration, body morphology, and soft materials,” Trends Cognit. Sci. 18 (8), 404413 (2014).Google Scholar
26. Aguilar, W., a-Bonfil, G. S., Froese, T. and Gershenson, C., “The past, present, and future of artificial life,” Front. Robot. AI 1 (3), 4463 (2014).Google Scholar
27. Doursat, R., Sayama, H. and Michel, O., “A review of morphogenetic engineering,” Nat. Comput. 12 (4), 517535 (2013).Google Scholar
28. Stanley, K. O., “Why Evolutionary Robotics Will Matter,” In: New Horizons in Evolutionary Robotics, vol. 341(3) (Springer, Berlin-Heidelberg, 2011) pp. 3741.Google Scholar
29. Meyer, J. A., Husbands, P. and Harvey, I., “Evolutionary Robotics: A Survey of Applications and Problems,” In: Evolutionary Robotics, vol. 1468(1) (Springer, Berlin Heidelberg, Berlin, Heidelberg, 1998) pp. 121.Google Scholar
30. Silva, F., Duarte, M., Correia, L., Oliveira, S. M. and Christensen, A. L., “Open issues in evolutionary robotics,” Evol. Comput. 24 (2), 205236 (2016).Google Scholar
31. Bongard, J., “Why Morphology Matters,” In: The Horizons of Evolutionary Robotics (6) (The MIT Press, Cambridge, MA, USA, 2014) pp. 125152.Google Scholar
32. Eiben, A. E. and Smith, J. E., “Towards the evolution of things,” SIGEVOlution 8 (3), 36 (2016).Google Scholar
33. Eiben, A. E. and Smith, J. E., Introduction to Evolutionary Computing (Springer, Berlin-Heidelberg, 2015).Google Scholar
34. Samuelsen, E., Glette, K. and Torresen, J., “A Hox Gene Inspired Generative Approach to Evolving Robot Morphology,” Proceedings of the Genetic and Evolutionary Computation Conference (2013) pp. 751–758.Google Scholar
35. Parker, G. B., Duzevik, D., Anev, A. S. and Georgescu, R., “Morphological Evolution of Dynamic Structures in a 3-Dimensional Simulated Environment,” Proceedings of the International Symposium on Computational Intelligence in Robotics and Automation (2007) pp. 534–540.Google Scholar
36. Moore, J. M. and McKinley, P. K., “Evolution of an Amphibious Robot with Passive Joints,” Proceedings of the IEEE Congress on Evolutionary Computation (2013) pp. 1443–1450.Google Scholar
37. Chocron, O. and Bidaud, P., “Genetic Design of 3D Modular Manipulators,” Proceedings of the International Symposium on Computational Intelligence in Robotics and Automation (1997) pp. 223–228.Google Scholar
38. Núñez Cruz, R. S. and Zannatha, J. M. Ibarra, “Efficient mechanical design and limit cycle stability for a humanoid robot: An application of genetic algorithms,” Neurocomputing 233, 7280 (2017).Google Scholar
39. Weel, B., Crosato, E., Heinerman, J., Haasdijk, E. and Eiben, A. E., “A Robotic Ecosystem with Evolvable Minds and Bodies,” Proceedings of the IEEE International Conference on Evolvable Systems (2014) pp. 165–172.Google Scholar
40. Larpin, K., Pouya, S., van den Kieboom, J. and Ijspeert, A. J., “Co-Evolution of Morphology and Control of Virtual Legged Robots for a Steering Task,” Proceedings of the IEEE International Conference on Robotics and Biomimetics (2011) pp. 2799–2804.Google Scholar
41. Buason, G., Bergfeldt, N. and Ziemke, T., “Brains, bodies, and beyond: competitive co-evolution of robot controllers, morphologies and environments,” Genet. Program. Evolvable Mach. 6 (1), 2551 (2005).Google Scholar
42. Endo, K., Maeno, T. and Kitano, H., “Co-evolution of Morphology and Walking Pattern of Biped Humanoid Robot Using Evolutionary Computation: Designing the Real Robot,” Proceedings of the IEEE International Conference on Robotics and Automation (2003) pp. 1362–1367.Google Scholar
43. Mautner, C. and Belew, R. K., “Evolving robot morphology and control,” Artif. Life Rob. 4 (3), 130136 (2000).Google Scholar
44. Bongard, J., “The utility of evolving simulated robot morphology increases with task complexity for object manipulation,” Artif. Life 16 (3), 201223 (2010).Google Scholar
45. Chedmail, P. and Ramstein, E., “Robot Mechanism Synthesis and Genetic Algorithms,” Proceedings of the IEEE International Conference on Robotics and Automation (1996) pp. 3466–3471.Google Scholar
46. Shiakolas, P. S., Koladiya, D. and Kebrle, J., “Optimum Robot Design Based on Task Specifications Using Evolutionary Techniques and Kinematic, Dynamic, and Structural Constraints,” Proceedings of the International Mechanical Engineering Congress and Exposition, vol. 2002 (2002) pp. 825–832.Google Scholar
47. Rommerman, M., Kuhn, D. and Kirchner, F., “Robot Design for Space Missions Using Evolutionary Computation,” Proceedings of the IEEE Congress on Evolutionary Computation (2009) pp. 2098–2105.Google Scholar
48. Sims, K., “Evolving Virtual Creatures,” Proceedings of the Annual Conference on Computer Graphics (1994) pp. 15–22.Google Scholar
49. Lessin, D., Fussell, D. and Miikkulainen, R., “Adopting Morphology to Multiple Tasks in Evolved Virtual Creatures,” Proceedings of the International Conference on Simulation and Synthesis of Living Systems (2014) pp. 247–254.Google Scholar
50. Pilat, M. L., Ito, T., Suzuki, R. and Arita, T., “Evolution of Virtual Creature Foraging in a Physical Environment,” Proceedings of the International Conference on Simulation and Synthesis of Living Systems (2012) pp. 423–430.Google Scholar
51. Azarbadegan, A., Broz, F. and Nehaniv, C. L., “Evolving Sims's Creatures for Bipedal Gait,” Proceedings of the IEEE Symposium on Artificial Life (2011) pp. 218–224.Google Scholar
52. Chaumont, N., Egli, R. and Adami, C., “Evolving virtual creatures and catapults,” Artif. Life 13 (2), 139157 (2007).Google Scholar
53. O'kelly, M. and Hsiao, K., “Evolving Simulated Mutually Perceptive Creatures for Combat,” Proceedings of the International Conference on Simulation and Synthesis of Living Systems (2004) pp. 113–118.Google Scholar
54. Faiña, A., Bellas, F., Orjales, F., Souto, D. and Duro, R. J., “An evolution friendly modular architecture to produce feasible robots,” Robot. Auton. Syst. 63, 195205 (2015).Google Scholar
55. Lipson, H., “Evolutionary synthesis of kinematic mechanisms,” Artif. Intell. Eng. Des. Anal. Manuf. 22 (3), 195205 (2008).Google Scholar
56. Auerbach, J., Aydin, D., Maesani, A., Kornatowski, P., Cieslewski, T., Heitz, G., Fernando, P., Loshchilov, I., Daler, L. and Floreano, D., “RoboGen: Robot Generation through Artificial Evolution,” Proceedings of the Artificial Life 14: International Conference on the Synthesis and Simulation of Living Systems (2014) pp. 136–137.Google Scholar
57. Gregor, M., Spalek, J. and Capák, J., “Use of Context Blocks in Genetic Programming for Evolution of Robot Morphology,” Proceedings of the International Conference ELEKTRO (2012) pp. 286–291.Google Scholar
58. Miconi, T., “In Silicon No One Can Hear You Scream: Evolving Fighting Creatures,” In: Genetic Programming, vol. 4971(3) (Springer, Berlin-Heidelberg, 2008) pp. 2536.Google Scholar
59. Macinnes, I. and Di Paolo, E., “Crawling Out of the Simulation: Evolving Real Robot Morphologies Using Cheap Reusable Modules,” Proceedings of the International Conference on Simulation and Synthesis of Living Systems (2004) pp. 94–99.Google Scholar
60. Lee, W. P., Hallam, J. and Lund, H. H., “A Hybrid GP/GA Approach for Co-evolving Controllers and Robot Bodies to Achieve Fitness-Specified Tasks,” Proceedings of the IEEE International Conference on Evolutionary Computation (1996) pp. 384–389.Google Scholar
61. Lee, W. P., “Evolving Autonomous Robot: From Controller to Morphology,” IEICE Trans. Inf. Syst. 83 (2), 200210 (2000).Google Scholar
62. Lessin, D., Fussell, D. and Miikkulainen, R., “Open-Ended Behavioral Complexity for Evolved Virtual Creatures,” Proceedings of the Annual Conference on Genetic and Evolutionary Computation (2013) pp. 335–342.Google Scholar
63. Lund, H. H., “Co-evolving Control and Morphology with LEGO Robots,” In: Morpho-functional Machines: The New Species (4) (Springer, Tokyo, Japan, 2003) pp. 5979.Google Scholar
64. Risi, S., Cellucci, D. and Lipson, H., “Ribosomal Robots: Evolved Designs Inspired by Protein Folding,” Proceedings of the Annual Conference on Genetic and Evolutionary Computation (2013) pp. 263–270.Google Scholar
65. Hornby, G. S. and Pollack, J. B., “Body-Brain Co-evolution using L-Systems as a Generative Encoding,” Proceedings of the Annual Conference on Genetic and Evolutionary Computation (2001) pp. 868–875.Google Scholar
66. De Beir, A. and Vanderborght, B., “Evolutionary Method for Robot Morphology: Case Study of Social Robot Probo,” Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction (2016) pp. 609–610.Google Scholar
67. Lim, S. H. and Teo, J., “Design, Optimization and Fabrication of a Climbing Six Articulated-Wheeled Robot Using Artificial Evolution and 3D Printing,” BR. J. Math. Comput. Sci. 10 (2), 121 (2015).Google Scholar
68. Clark, A. J., Moore, J. M., Wang, J. and Tan, X., “Evolutionary Design and Experimental Validation of a Flexible Caudal Fin for Robotic Fish,” Proceedings of the International Conference on Simulation and Synthesis of Living Systems (2012) pp. 325–332.Google Scholar
69. Shim, Y. S., Kim, S. J. and Kim, C. H., “Evolving Flying Creatures with Path-Following Behavior,” Proceedings of the International Symposium on Computational Intelligence in Robotics and Automation (2004) pp. 125–132.Google Scholar
70. Corucci, F., Calisti, M., Hauser, H. and Laschi, C., “Novelty-Based Evolutionary Design of Morphing Underwater Robots,” Proceedings of the Annual Conference on Genetic and Evolutionary Computation (2015) pp. 145–152.Google Scholar
71. Hornby, G. S., Generative Representations for Evolutionary Design Automation Ph.D. Thesis (Waltham, Massachusetts, USA: Brandeis University, 2003).Google Scholar
72. Brodbeck, L., Hauser, S. and Iida, F., “Morphological evolution of physical robots through model-free phenotype development,” PLoS ONE 10 (6), e0128444 (2015).Google Scholar
73. Pollack, J. B. and Lipson, H., “The GOLEM Project: Evolving Hardware Bodies and Brains,” Proceedings of the NASA/DoD Workshop on Evolvable Hardware (2000) pp. 37–42.Google Scholar
74. Smith, B. G. R., Saaj, C. M. and Allouis, E., “Evolving Legged Robots Using Biologically Inspired Optimization Strategies,” Proceedings of the IEEE International Conference on Robotics and Biomimetics (2010) pp. 1335–1340.Google Scholar
75. Cliff, D. and Miller, G. F., “Tracking the Red Queen: Measurements of Adaptive Progress in Co-evolutionary Simulations,” In: Advances in Artificial Life, vol. 929(16) (Springer, Berlin-Heidelberg, 1995) pp. 200218.Google Scholar
76. Komosiński, M. and Ulatowski, S., “Framsticks: Towards a Simulation of a Nature-Like World, Creatures and Evolution,” In: Applications of Evolutionary Computation, vol. 1674(33) (Springer, Berlin-Heidelberg, 1999) pp. 261265.Google Scholar
77. Digumarti, K., “Concurrent Optimization of Mechanical Design and Locomotion Control of a Legged Robot,” Proceedings of the Mobile Service Robotics: Proceedings of the 17th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines (2014) pp. 315–323.Google Scholar
78. Auerbach, J. E. and Bongard, J. C., “Evolving Complete Robots with CPPN-NEAT: The Utility of Recurrent Connections,” Proceedings of the Annual Conference on Genetic and Evolutionary Computation (2011) pp. 1475–1482.Google Scholar
79. Endo, K. and Maeno, T., “Simultaneous Design of Morphology of Body, Neural Systems and Adaptability to Environment of Multi-Link-Type Locomotive Robots Using Genetic Programming,” Proceedings of the RSJ/IEEE International Conference on Intelligent Robots and Systems (2001) pp. 2282–2287.Google Scholar
80. Endo, K., Maeno, T. and Kitano, H., “Co-evolution of Morphology and Walking Pattern of Biped Humanoid Robot Using Evolutionary Computation. Consideration of Characteristic of the Servomotors,” Proceedings of the RSJ/IEEE International Conference on Intelligent Robots and Systems (2002) pp. 2678–2683.Google Scholar
81. Rubrecht, S., Singla, E., Padois, V., Bidaud, P. and de Broissia, M., “Evolutionary Design of a Robotic Manipulator for a Highly Constrained Environment,” In: New Horizons in Evolutionary Robotics, vol. 341(8) (Springer, Berlin-Heidelberg, 2011) pp. 109121.Google Scholar
82. Mazzapioda, M., Cangelosi, A. and Nolfi, S., “Evolving Morphology and Control: A Distributed Approach,” Proceedings of the IEEE Congress on Evolutionary Computation (2009) pp. 2217–2224.Google Scholar
83. Heinen, M. R. and Osório, F. S., “Evolving Morphologies and Gaits of Physically Realistic Simulated Robots,” Proceedings of the ACM symposium on Applied Computing (2009) pp. 1161–1165.Google Scholar
84. Farritor, S. and Dubowsky, S., “On modular design of field robotic systems,” Auton. Robot. 10 (1), 5765 (2001).Google Scholar
85. Chocron, O., “Evolutionary design of modular robotic arms,” Robotica 26 (3), 323330 (2007).Google Scholar
86. Chocron, O., “Evolving Modular Robots for Rough Terrain Exploration,” In: Mobile Robots: The Evolutionary Approach, vol. 50(2) (Springer-Verlag, Berlin-Heidelberg, 2007) pp. 2346.Google Scholar
87. Chung, W. K., Han, Jeongheon, Youm, Y. and Kim, S. H., “Task Based Design of Modular Robot Manipulator Using Efficient Genetic Algorithm,” Proceedings of the International Conference on Robotics and Automation (1997) pp. 507–512.Google Scholar
88. Miconi, T. and Channon, A., “A Virtual Creatures Model for Studies in Artificial Evolution,” Proceedings of the IEEE Congress on Evolutionary Computation (2005) pp. 565–572.Google Scholar
89. Pollack, J. B., Hornby, G. S., Lipson, H. and Funes, P., “Computer creativity in the automatic design of robots,” Leonardo 36 (2), 115121 (2003).Google Scholar
90. Endo, K., Maeno, T. and Kitano, H., “Co-Evolution of Morphology and Walking Pattern of Biped Humanoid Robot Using Evolutionary Computation–Evolutionary Designing Method and its Evaluation,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2003) pp. 340–345.Google Scholar
91. Sims, K., “Evolving 3D morphology and behavior by competition,” Artif. Life 1 (4), 353372 (1994).Google Scholar
92. Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T., “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput. 6 (2), 182197 (2002).Google Scholar
93. Back, T., Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms (Oxford University Press, New York, NY, USA, 1996).Google Scholar
94. Stanley, K. O. and Miikkulainen, R., “Evolving neural networks through augmenting topologies,” Evol. Comput. 10 (2), 99127 (2002).Google Scholar
95. Hansen, N., “The CMA Evolution Strategy: A Tutorial,” arXiv.org, 1604. arXiv:1604.00772 (2016).Google Scholar
96. Caamaño, P., Tedín, R., Paz-Lopez, A. and Becerra, J. A., “JEAF: A Java Evolutionary Algorithm Framework,” Proceedings of the IEEE Congress on Evolutionary Computation (2010) pp. 1–8.Google Scholar
97. Lassabe, N., Luga, H. and Duthen, Y., “A New Step for Artificial Creatures,” Proceedings of the IEEE Symposium on Artificial Life (2007) pp. 243–250.Google Scholar
98. Parker, G. B. and Nathan, P. J., “Co-Evolution of Sensor Morphology and Control on a Simulated Legged Robot,” Proceedings of the International Symposium on Computational Intelligence in Robotics and Automation (2007) pp. 516–521.Google Scholar
99. Jakobi, N., Husbands, P. and Harvey, I., “Noise and the Reality Gap: The use of Simulation in Evolutionary Robotics,” In: Advances in Artificial Life, vol. 929(53), (Springer, Berlin-Heidelberg, 1995) pp. 704720.Google Scholar
100. Nelson, A. L. and Grant, E.Aggregate Selection in Evolutionary Robotics”, In: Mobile Robots: The Evolutionary Approach, vol. 50(4) (Springer-Verlag, Berlin-Heidelberg, 2007) pp. 6388.Google Scholar
101. Lee, W. P., “Evolving robot brains and bodies together: An experimental investigation,” J. Chin. Inst. Eng. 26 (2), 125132 (2003).Google Scholar
102. Moore, J. M. and McKinley, P. K., “Evolving Flexible Joint Morphologies,” Proceedings of the Annual Conference on Genetic and Evolutionary Computation (2012) pp. 145–152.Google Scholar
103. Cliff, D., Husbands, P. and Harvey, I., “Explorations in evolutionary robotics,” Adapt. Behav. 2 (1), 73110 (1993).Google Scholar
104. Lipson, H. and Pollack, J., “Evolving Physical Creatures,” Proceedings of the International Conference on Artificial Life (2006) pp. 282–287.Google Scholar
105. Faíña, A., Bellas, F., López-Peña, F. and Duro, R. J., “EDHMoR: Evolutionary designer of heterogeneous modular robots,” Eng. Appl. Artif. Intell. 26 (10), 24082423 (2013).Google Scholar