Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-16T02:24:12.589Z Has data issue: false hasContentIssue false

Three-dimensional path planning with enhanced gravitational search algorithm for unmanned aerial vehicle

Published online by Cambridge University Press:  22 May 2024

Keming Jiao
Affiliation:
School of Electronics and Information Engineering, Tongji University, Shanghai, China Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, China
Jie Chen
Affiliation:
School of Electronics and Information Engineering, Tongji University, Shanghai, China Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, China
Bin Xin*
Affiliation:
School of Automation, Beijing Institute of Technology, Beijing, China National Key Lab of Autonomous Intelligent Unmanned Systems, Beijing, China
Li Li
Affiliation:
School of Electronics and Information Engineering, Tongji University, Shanghai, China Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, China
Yifan Zheng
Affiliation:
School of Electronics and Information Engineering, Tongji University, Shanghai, China Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, China
Zhixin Zhao
Affiliation:
School of Electronics and Information Engineering, Tongji University, Shanghai, China Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, China
*
Corresponding author: Bin Xin; Email: brucebin@bit.edu.cn

Abstract

Path planning for the unmanned aerial vehicle (UAV) is to assist in finding the proper path, serving as a critical role in the intelligence of a UAV. In this paper, a path planning for UAV in three-dimensional environment (3D) based on enhanced gravitational search algorithm (EGSA) is put forward, taking the path length, yaw angle, pitch angle, and flight altitude as considerations of the path. Considering EGSA is easy to fall into local optimum and convergence insufficiency, two factors that are the memory of current optimal and random disturbance with chaotic levy flight are adopted during the update of particle velocity, improving the balance between exploration and exploitation for EGSA through different time-varying characteristics. With the identical cost function, EGSA is compared with seven peer algorithms, such as moth flame optimization algorithm, gravitational search algorithm, and five variants of gravitational search algorithm. The experimental results demonstrate that EGSA is superior to the seven comparison algorithms on CEC 2020 benchmark functions and the path planning method based on EGSA is more valuable than the other seven methods in diverse environments.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kose, O., Oktay, T. and Özen, E., “Simultaneous arm morphing quadcopter and autonomous flight system design,” Aircr Eng Aerosp Tec 95(10), 16241632 (2023). doi: 10.1108/AEAT-05-2023-0146.CrossRefGoogle Scholar
Saadi, A. A., Soukane, A., Meraihi, Y., Gabis, A. B., Mirjalili, S. and Ramdane-Cherif, A., “UAV path planning using optimization approaches: A survey,” Arch Computat Methods Eng 29(6), 42334284 (2022). doi: 10.1007/s11831-022-09742-7.CrossRefGoogle Scholar
Zhang, H., Xin, B., Dou, L.-H., Chen, J. and Hirota, K., “A review of cooperative path planning of an unmanned aerial vehicle group,” Front Inform Technol Electron Eng 21(12), 16711694 (2020). doi: 10.1631/FITEE.2000228.CrossRefGoogle Scholar
Ding, Y., Xin, B. and Chen, J., “A review of recent advances in coordination between unmanned aerial and ground vehicles,” Unmann Syst 09(02), 97117 (2020). doi: 10.1142/S2301385021500084.CrossRefGoogle Scholar
Xiao, G., Zhang, L., Wu, T., Han, Y., Ding, Y. and Han, C., “FBi-RRT: A path planning algorithm for manipulators with heuristic node expansion,” Robotica 42(3), 644659 (2024). doi: 10.1017/S0263574723001674.CrossRefGoogle Scholar
Zhao, Y., Zheng, Z. and Liu, Y., “Survey on computational-intelligence-based UAV path planning, knowledge-based systems,” Knowl_Bas Syst 158, 5464 (2018). doi: 10.1016/j.knosys.2018.05.033.Google Scholar
Ding, Y., Xin, B., Dou, L., Chen, J. and Chen, B. M., “A memetic algorithm for curvature-constrained path planning of messenger UAV in air-ground coordination,” IEEE Trans Autom Sci Eng 19(4), 37353749 (2022). doi: 10.1109/TASE.2021.3135044.CrossRefGoogle Scholar
He, W., Qi, X. and Liu, L., “A novel hybrid particle swarm optimization for multi-UAV cooperate path planning,” Appl Intell 51(10), 73507364 (2021). doi: 10.1007/s10489-020-02082-8.CrossRefGoogle Scholar
Liu, Z., Huang, Y., Liu, D., Guo, X., Wang, K. and Tan, J., “Trajectory planning of large redundant manipulator considering kinematic constraints and energy efficiency,” Robotica 41(11), 35243540 (2023). doi: 10.1017/S0263574723001157.CrossRefGoogle Scholar
Oktay, T. and Sal, F., “Effect of the simultaneous variation in blade root chord length and blade taper on helicopter flight control effort,” Int J Aerospace Eng 2017, 18 (2017). doi: 10.1155/2017/6325269.CrossRefGoogle Scholar
Kavraki, L. E., Kolountzakis, M. N. and Latombe, J.-C., “Analysis of probabilistic roadmaps for path planning,” IEEE Trans Robot Autom 14(1), 166171 (1998). doi: 10.1109/70.660866.CrossRefGoogle Scholar
Chen, T., Zhang, G., Hu, X. and Xiao, J., “Unmanned Aerial Vehicle Route Planning Method Based on a Star Algorithm,” In: 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), (2018) pp.15101514. doi:10.1109/ICIEA.2018.8397948.CrossRefGoogle Scholar
Zammit, C. and van Kampen, E.-J., “Comparison between A* and RRT algorithms for 3D UAV path planning,” Unmann Syst 10(02), 129146 (2022). doi: 10.1142/S2301385022500078.CrossRefGoogle Scholar
Shao, S., Peng, Y., He, C. and Du, Y., “Efficient path planning for UAV formation via comprehensively improved particle swarm optimization,” ISA Transactions 97, 415430 (2020). doi: 10.1016/j.isatra.2019.08.018.CrossRefGoogle ScholarPubMed
Shah, B. C. and Gupta, S. K., “Long-distance path planning for unmanned surface vehicles in complex marine environment,” IEEE J Ocean Eng 45(3), 813830 (2020). doi: 10.1109/JOE.2019.2909508.CrossRefGoogle Scholar
Lee, W., Choi, G.-H. and Kim, T.-W., “Visibility graph-based path-planning algorithm with quadtree representation,” Appl Ocean Res 117, 102887 (2021). doi: 10.1016/j.apor.2021.102887.CrossRefGoogle Scholar
Di, B., Zhou, R. and Duan, H., “Potential field based receding horizon motion planning for centrality-aware multiple UAV cooperative surveillance,” Aerosp Sci Technol 46, 386397 (2015). doi: 10.1016/j.ast.2015.08.006.CrossRefGoogle Scholar
Sun, J., Tang, J. and Lao, S., “Collision avoidance for cooperative UAVs with optimized artificial potential field algorithm,” IEEE Access 5, 1838218390 (2017). doi: 10.1109/ACCESS.2017.2746752.CrossRefGoogle Scholar
Woods, A. C. and La, H. M., “A novel potential field controller for use on aerial robots,” IEEE Trans Syst Man Cybernet: Syst 49(4), 665676 (2019). doi: 10.1109/TSMC.2017.2702701.CrossRefGoogle Scholar
Gao, X., Niu, S., Wei, D., Liu, X., Wang, T., Zhu, F., Dong, J. and Sun, Q., “Joint metric learning-based class-specific representation for image set classification,” IEEE Trans Neur Net Lear Syst 35(5), 115 (2022). doi: 10.1109/TNNLS.2022.3212703.Google Scholar
Khlif, N., Nahla, K. and Safya, B., “Reinforcement learning with modified exploration strategy for mobile robot path planning,” Robotica 41(9), 26882702 (2023). doi: 10.1017/S0263574723000607.CrossRefGoogle Scholar
Ghafarian Tamizi, M., Honari, H., Nozdryn-Plotnicki, A. and Najjaran, H., “End-to-end deep learning-based framework for path planning and collision checking: Bin-picking application,” Robotica 42(4), 10941112 (2024). doi: 10.1017/S0263574724000109.CrossRefGoogle Scholar
Kose, O. and Oktay, T., “Simultaneous design of morphing hexarotor and autopilot system by using deep neural network and SPSA,” Aircr Eng Aerosp Tec 95(6), 939949 (2023). doi: 10.1108/AEAT-07-2022-0178.CrossRefGoogle Scholar
Liu, Y., Zheng, Z., Qin, F., Zhang, X. and Yao, H., “A residual convolutional neural network based approach for real-time path planning,” Know-Bas Syst 242, 108400 (2022). doi: 10.1016/j.knosys.2022.108400.CrossRefGoogle Scholar
Liu, Y., Wang, H., Fan, J., Wu, J. and Wu, T., “Control-oriented UAV highly feasible trajectory planning: A deep learning method,” Aerosp Sci Technol 110, 106435 (2021). doi: 10.1016/j.ast.2020.106435.CrossRefGoogle Scholar
Sathyan, A., Ernest, N. D. and Cohen, K., “An efficient genetic fuzzy approach to UAV swarm routing,” Unmann Syst 04(02), 117127 (2015). doi: 10.1142/S2301385016500011.CrossRefGoogle Scholar
Adhikari, D., Kim, E. and Reza, H., “A Fuzzy Adaptive Differential Evolution for Multi-Objective 3D UAV Path Optimization,” In: 2017 IEEE Congress On Evolutionary Computation (CEC), (2017) pp. 22582265. doi: 10.1109/CEC.2017.7969578.CrossRefGoogle Scholar
Dai, Y., Li, S., Chen, X., Nie, X., Rui, X. and Zhang, Q., “Three-dimensional truss path planning of cellular robots based on improved sparrow algorithm,” Robotica 42(2), 347366 (2023). doi: 10.1017/S0263574723001480.CrossRefGoogle Scholar
Xin, B., Chen, J., Zhang, J., Fang, H. and Peng, Z.-H., “Hybridizing differential evolution and particle swarm optimization to design powerful optimizers: A review and taxonomy,” IEEE Trans Syst Man Cybernet Part C (Appl Rev) 42(5), 744767 (2012). doi: 10.1109/TSMCC.2011.2160941.CrossRefGoogle Scholar
Aslan, S. and Oktay, T., “Path planning of an unmanned combat aerial vehicle with an extended-treatment-approach-based immune plasma algorithm,” Aerospace 10(5), 487 (2023). doi: 10.3390/aerospace10050487.CrossRefGoogle Scholar
S., J. F. and R., S., “Self-adaptive learning particle swarm optimization-based path planning of mobile robot using 2D Lidar environment,” Robotica 42(4), 9771000 (2024). doi: 10.1017/S0263574723001819.CrossRefGoogle Scholar
Qadir, Z., Zafar, M. H., Moosavi, S. K. R., Le, K. N. and Mahmud, M. A. P., “Autonomous UAV path-planning optimization using metaheuristic approach for predisaster assessment,” IEEE Inter Things J 9(14), 1250512514 (2022). doi: 10.1109/JIOT.2021.3137331.CrossRefGoogle Scholar
Yu, Z., Si, Z., Li, X., Wang, D. and Song, H., “A novel hybrid particle swarm optimization algorithm for path planning of UAVs,” IEEE Inter Things J 9(22), 2254722558 (2022). doi: 10.1109/JIOT.2022.3182798.CrossRefGoogle Scholar
Dai, Y., Yu, J., Zhang, C., Zhan, B. and Zheng, X., “A novel whale optimization algorithm of path planning strategy for mobile robots,” Appl Intell 53(9), 1084310857 (2022). doi: 10.1007/s10489-022-04030-0.CrossRefGoogle Scholar
Xie, Z. W., Zhang, Q., Jiang, Z. N. and Liu, H., “Robot learning from demonstration for path planning: A review,” Sci China Technol Sci 63(8), 13251334 (2020). doi: 10.1007/s11431-020-1648-4.CrossRefGoogle Scholar
Li, P. and Duan, H. B., “Path planning of unmanned aerial vehicle based on improved gravitational search algorithm,” Sci China Technol Sci 55(10), 27122719 (2012). doi: 10.1007/s11431-012-4890-x.CrossRefGoogle Scholar
Su, Z. and Wang, H., “A novel robust hybrid gravitational search algorithm for reusable launch vehicle approach and landing trajectory optimization,” Neurocomputing 162, 116127 (2015). doi: 10.1016/j.neucom.2015.03.063.CrossRefGoogle Scholar
Rashedi, E., Nezamabadi-pour, H. and Saryazdi, S., “GSA: A gravitational search algorithm,” Inform Sci, 179(13), 22322248 (2009). doi: 10.1016/j.ins.2009.03.004.CrossRefGoogle Scholar
Jiao, K., Chen, J., Xin, B., Li, L., Zheng, Y. and Zhao, Z., “Three Dimensional Path Planning for UAV Based on Chaotic Gravitational Search Algorithm,” In: The 7th International Workshop on Advanced Computational Intelligence and Intelligent Informatics (IWACIII2021), (Beijing, China, 2021) pp. 16.Google Scholar
Yang, Y., Liu, J., Wang, Q. and Yang, S., “Dynamic Path Planning for AGV Based on Tent Chaotic Sparrow Search Algorithm,” In: 2021 International Conference on Information Control, Electrical Engineering and Rail Transit (ICEERT), (2021) pp.100104. doi: 10.1109/ICEERT53919.2021.00029.CrossRefGoogle Scholar
Chen, J., Xin, B., Peng, Z., Dou, L. and Zhang, J., “Optimal contraction theorem for exploration-exploitation tradeoff in search and optimization,” IEEE Trans Syst Man Cybernet - Part A: Syst Humans 39(3), 680691 (2009). doi: 10.1109/TSMCA.2009.2012436.CrossRefGoogle Scholar
Črepinšek, M., Liu, S.-H. and Mernik, M., “Exploration and exploitation in evolutionary algorithms: A survey,” ACM Comput Surv (CSUR) 45(3), 133 (2013).CrossRefGoogle Scholar
Vikas, and Parhi, D. R., “Single and multiple humanoid path planning using Hill valley approach applied to gravitational drift in gravitational search algorithm,” Robotica 41(12), 36273648 (2023). doi: 10.1017/S0263574723001182.CrossRefGoogle Scholar
Mirjalili, S., “Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm, knowledge-based systems,” Knowl-Bas Syst 89, 228249 (2015). doi: 10.1016/j.knosys.2015.07.006.CrossRefGoogle Scholar
Mittal, H., Pal, R., Kulhari, A. and Saraswat, M., “Chaotic kbest Gravitational Search Algorithm (CKGSA),” In:2016 Ninth International Conference on Contemporary Computing (IC3), (2016). pp.16. doi: 10.1109/IC3.2016.7880252.CrossRefGoogle Scholar
Mirjalili, S. and Lewis, A., “Adaptive gbest-guided gravitational search algorithm,” Neural Comput & Applic 25(7-8), 15691584 (2014). doi: 10.1007/s00521-014-1640-y.CrossRefGoogle Scholar
Kumar, S. and John, B., “A novel gaussian based particle swarm optimization gravitational search algorithm for feature selection and classification,” Neural Comput & Applic 33(19), 1230112315 (2021). doi: 10.1007/s00521-021-05830-0.CrossRefGoogle Scholar
Khan, T. A. and Ling, S. H., “A novel hybrid gravitational search particle swarm optimization algorithm,” Eng Appl Artif Intel 102, 104263 (2021). doi: 10.1016/j.engappai.2021.104263.CrossRefGoogle Scholar
Mittal, H. and Saraswat, M., “An image segmentation method using logarithmic kbest gravitational search algorithm based superpixel clustering,” Evol Intell 14(3), 12931305 (2021). doi: 10.1007/s12065-018-0192-y.CrossRefGoogle Scholar
Yue, C., Price, K., Suganthan, P. N., Liang, J., Ali, M. Z., Qu, B., Awad, N. H. and Biswas, P. P., “Problem Definitions and Evaluation Criteria for the CEC. 2020 Special Session and Competition On Single Objective Bound Constrained Numerical optimization, Comput. Intell. Lab,”, Lab., Zhengzhou Univ., Zhengzhou, China, (2019).Tech. Rep 201911Google Scholar
Li, D., Guo, W., Lerch, A., Li, Y., Wang, L. and Wu, Q., “An adaptive particle swarm optimizer with decoupled exploration and exploitation for large scale optimization,” Swarm Evol Comput 60, 100789 (2021). doi: 10.1016/j.swevo.2020.100789.CrossRefGoogle Scholar
Derrac, J., García, S., Molina, D. and Herrera, F., “A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms,” Swarm Evol Comput 1(1), 318 (2011). doi: 10.1016/j.swevo.2011.02.002.CrossRefGoogle Scholar