Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-10T15:10:37.535Z Has data issue: false hasContentIssue false

The dark matter halos of spheroidal galaxies and clusters of galaxies

Published online by Cambridge University Press:  26 May 2016

Tommaso Treu
Affiliation:
California Institute of Technology, Astronomy 105-24, Pasadena CA 91125; present address: University of California at Los Angeles, Astronomy & Astrophysics, Los Angeles, CA 90095
Léon V. E. Koopmans
Affiliation:
Space Telescope Science Institute, 3700 San Martin Dr, Baltimore MD 21218
David J. Sand
Affiliation:
California Institute of Technology, Astronomy 105-24, Pasadena CA 91125
Graham P. Smith
Affiliation:
California Institute of Technology, Astronomy 105-24, Pasadena CA 91125
Richard S. Ellis
Affiliation:
California Institute of Technology, Astronomy 105-24, Pasadena CA 91125

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We describe the first results from two observational projects aimed at measuring the amount and spatial distribution of dark matter in distant early-type galaxies (E/S0s) and clusters of galaxies. At the galaxy scale, the Lenses Structure and Dynamics (LSD) Survey is gathering kinematic data for distant (up to z ⋐ 1) E/S0s that are gravitational lenses. A joint lensing and dynamical analysis constrains the fraction of dark matter within the Einstein radius, the mass-to-light ratio of the stellar component, and the total slope of the mass density profile. These properties and their evolution with redshift are briefly discussed in terms of the formation and evolution of E/S0 galaxies and measurement of the Hubble Constant from gravitational time delay systems. At the cluster scale – after careful removal of the stellar component with a joint lensing and dynamical analysis – systems with giant radial arcs can be used to measure precisely the inner slope of the dark matter halo. An HST search for radial arcs and the analysis of a first sample are briefly discussed in terms of the universal dark matter halos predicted by CDM simulations.

Type
Part 5: Clusters and Ellipticals
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

El-Zant, A. et al. 2003, ApJ, submitted, astro-ph/0309412.Google Scholar
Freedman, W. et al. 2001, ApJ, 553, 47.CrossRefGoogle Scholar
Gebhardt, K. et al. 2003, ApJ, in press, astro-ph/0307242.Google Scholar
Gerhard, O., Kronawitter, A., Saglia, R. P., & Bender, R. 2001, AJ, 121, 1936.Google Scholar
Koopmans, L.V.E. & Treu, T. 2002, ApJ, 568, L5.Google Scholar
Koopmans, L.V.E. & Treu, T. 2003, ApJ, 583, 606.Google Scholar
Koopmans, L.V.E., Treu, T., Fassnacht, C.D., Blandford, R.D. & Surpi, G. 2003, ApJ, 599, in press.CrossRefGoogle Scholar
Moore, B., Governato, F., Quinn, T., Stadel, J. & Lake, G. 1998, ApJ, 499, L5.Google Scholar
Navarro, J., Frenk, C. S., & White, S. D. M 1997, ApJ, 490, 493.Google Scholar
Sand, D.J., Treu, T. & Ellis, R.S. 2002, ApJ, 574, L129.Google Scholar
Sand, D.J., Treu, T., Smith, G.P. & Ellis, R.S. 2003, ApJ, submitted, astro-ph/0309465.Google Scholar
Spergel, D. & Steinhardt, P. 2000, Phys. Rev. Lett., 84, 3760.Google Scholar
Treu, T. & Koopmans, L.V.E. 2002, ApJ, 575, 87.Google Scholar
Treu, T. & Koopmans, L.V.E. 2003, MNRAS, 343, L29.CrossRefGoogle Scholar
Treu, T., Stiavelli, M., Casertano, S., Møller, P. & Bertin, 2002, ApJ, 564, L13.Google Scholar
van Dokkum, P.G. & Ellis, R.S. 2003, ApJ, 592, L53.CrossRefGoogle Scholar
Warren, S.J., Hewett, P.C., Lewis, G.F., Møller, P., Iovino, A., Shaver, P.A. 1996, MNRAS, 278, 139.Google Scholar
Zwicky, F. 1937, ApJ, 82, 217.Google Scholar