Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-02T17:02:10.752Z Has data issue: false hasContentIssue false

Unveiling the Multi-wavelength Phenomenology of Anomalous X-ray Pulsars

Published online by Cambridge University Press:  19 July 2016

GianLuca Israel
Affiliation:
INAF — Osservatorio Astronomico di Roma, Italy
Luigi Stella
Affiliation:
INAF — Osservatorio Astronomico di Roma, Italy
Stefano Covino
Affiliation:
INAF — Osservatorio Astronomico di Brera, Italy
Sergio Campana
Affiliation:
INAF — Osservatorio Astronomico di Brera, Italy
Lorella Angelini
Affiliation:
NASA/Goddard, Space Flight Center, USA
Roberto Mignani
Affiliation:
European Southern Observatory, Garching, Germany
Sandro Mereghetti
Affiliation:
CNR, Istituto di Astrofisica Spaziale e Fisica Cosmica, Milano, Italy
Gianni Marconi
Affiliation:
European Southern Observatory, Paranal, Chile
Rosalba Perna
Affiliation:
Princeton University, Princeton, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

During 2002–2003 the number of IR-identified counterparts to the Anomalous X-ray Pulsars (AXPs) has grown to four (4U 0142+61, IE 2259+586, IE 1048.1−5937 and RXS J170849−400910) out of the six objects (plus two candidates) known in this class. More importantly, some new common characteristics have been identified, such as IR variability, IR flattening in the broad-band energy spectrum, X-ray spectral variability as a function of pulse phase (which are not predicted by the magnetar model), and X-ray bursts (which cannot be explained in terms of standard accretion models). We present the results obtained from an extensive multi-wavelength observational campaign carried out with the NTT and CFHT for the optical/IR bands, and XMM and Chandra (plus BeppoSAX archival data) in X-rays. Based on these results and those reported in the literature, the IR-to-X-ray emission of AXPs is compared.

Type
Part 5: Magnetars, Central Compact Objects and Isolated Neutron Stars
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Camilo, F., Kaspi, V. M., Lyne, A. G., Manchester, R. N., Bell, J. F., D'Amico, N., McKay, N. P. F., & Crawford, F. 2000, ApJ, 541, 367.Google Scholar
Gavriil, F. P., Kaspi, V. M., & Woods, P. M. 2002, Nature, 419, 142.Google Scholar
Gotthelf, E. V., & Vasisht, G., 1998, New Astronomy, 3, 293.Google Scholar
Hulleman, F., van Kerkwijk, M. H., & Kulkarni, S. R. 2000, Nature, 408, 689.Google Scholar
Hulleman, F., Tennant, A. F., van Kerkwijk, M. H., Kulkarni, S. R., Kouveliotou, C., & Patel, S. K. 2001, ApJ, 563, L49.Google Scholar
Israel, G. L., et al. 2002, ApJ, 580, L143.Google Scholar
Israel, G. L., et al. 2003, ApJ, 589, L93.Google Scholar
Kaspi, V. M., & Gavriil, F. P. 2002, IAU Circ. 7924.Google Scholar
Kaspi, V. M., Gavriil, F. P., Woods, P. M., Jensen, J. B., Roberts, M. S. E., & Chakrabarty, D. 2003, ApJ, 588, L93.Google Scholar
Kulkarni, S. R., Kaplan, D. L., Marshall, H. L., Frail, D. A., Murakami, T., & Yonetoku, D. 2003, ApJ, 585, 948.Google Scholar
Pivovaroff, M. J., Kaspi, V. M., & Camilo, F. 2000, ApJ, 535, 379.Google Scholar
Thompson, C., & Duncan, R. C. 1993, ApJ, 408, 194.Google Scholar
Thompson, C., & Duncan, R. C. 1996, ApJ, 473, 322.Google Scholar
Torii, K., Kinugasa, K., Katayama, K., Tsunemi, H., & Yamauchi, S. 1998, ApJ, 503, 843.Google Scholar
Vasisht, G., Gotthelf, E. V., Torii, K., & Gaensler, B. M. 2000, ApJ, 542, L49.Google Scholar
Wang, Z., & Chakrabarty, D. 2002, ApJ, 579, L33.Google Scholar