Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-03T19:28:26.736Z Has data issue: false hasContentIssue false

Water Masers toward Low-Luminosity Young Stellar Objects

Published online by Cambridge University Press:  25 May 2016

Mark J Claussen
Affiliation:
National Radio Astronomy Observatory, Socorro, NM, USA
Kevin B. Marvel
Affiliation:
Owens Valley Radio Observatory, Big Pine, CA, USA
H. Alwyn Wootten
Affiliation:
National Radio Astronomy Observatory Charlottesville, VA, USA
Bruce A. Wilking
Affiliation:
University of Missouri, St. Louis, MO, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A review of the importance of water maser observations toward young stellar objects (YSOs) is presented. Also, we present recent, differing types of observations of water masers near YSOs. Single antenna observations, taken regularly, characterize the variability of the masers and allow estimates of time and spatial scales. High resolution (∼ 1 mas) multi-epoch observations allow proper motions to be studied. Detailed analysis of such proper motions will allow the placement of the masers in the circumstellar (a disk) or near-stellar environment at the base of the outflow. Radio interferometric techniques are the best method of making estimates of the kinematics of the gas in these regions.

Type
V. Low- and High-Mass Protostars and Their Environment
Copyright
Copyright © Kluwer 1997 

References

Claussen, M. J, Wilking, B. A., Benson, P. J., Wootten, H. A., Myers, P. C., & Terebey, S. 1996, ApJ Supp. Series, 106, 111.CrossRefGoogle Scholar
Claussen, M. J, Marvel, K. B., Wootten, H. A., & Wilking, B. A. 1997, in preparation.Google Scholar
Comoretto, G., it et al. 1990, A&A Supp. Series, 84, 179.Google Scholar
Genzel, R., & Downes, D. 1977, A&A Supp. Series, 30, 145.Google Scholar
Felli, M., Palagi, F., & Tofani, G. 1992, A&A, 255, 293.Google Scholar
Rodríguez, L. F., Moran, J. M., Ho, P. T. P., & Gottlieb, E. W., 1980, ApJ 235, 845.Google Scholar
Rogers, C. B. & Gottschalk, J. 1993, B.A.A.S., 25, 1367.Google Scholar
Terebey, S., Vogel, S. N., & Myers, P. C. 1989, ApJ, 340, 472.CrossRefGoogle Scholar
Wilking, B. A. & Claussen, M. J. 1987, ApJL, 320, L133.Google Scholar
Wilking, B. A., Claussen, M. J., Benson, P. J., Myers, P. C., Terebey, S., & Wootten, H. A. 1994, ApJ, 431, L119.Google Scholar
Wilking, B. A. & Claussen, M. J., Benson, P. J., Myers, P. C., Terebey, S., & Wootten, H. A. 1994b, in Clouds, Cores, and Low-Mass Stars, eds. Clemens, D. P. & Barvainis, R. (ASP: San Francisco), p. 299.Google Scholar
Wootten, H. A., Wilking, B. A., Meehan, L. & Claussen, M. J 1997, in preparation .Google Scholar
Xiang, D. & Turner, B. E. 1992, Acta Astronomica, 33, 87.Google Scholar
Xiang, D. & Turner, B. E. 1995, ApJ Supp. Series, 99, 121.Google Scholar
Zinnecker, H., McCaughrean, M., & Rayner, J., in Low Mass Star Formation from Infall to Outflow, ed. Malbet, F. & Castets, A. 1997, IAU Symposium No. 182.Google Scholar