Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-19T08:19:38.548Z Has data issue: false hasContentIssue false

Do Central Antiadrenergic Actions Contribute to the Atypical Properties of Clozapine?

Published online by Cambridge University Press:  06 August 2018

Ross J. Baldessarini*
Affiliation:
Departments of Psychiatry and Neuroscience Program, Harvard Medical School, Boston, and the Laboratories for Psychiatric Research and Psychotic Disorders Program of the Mailman Research Center, McLean Division of Massachusetts General Hospital, Belmont, MA 02178, USA
D. Huston-Lyons
Affiliation:
Departments of Psychiatry and Neuroscience Program, Harvard Medical School, Boston, and the Laboratories for Psychiatric Research and Psychotic Disorders Program of the Mailman Research Center, McLean Division of Massachusetts General Hospital, Belmont, MA 02178, USA
A. Campbell
Affiliation:
Departments of Psychiatry and Neuroscience Program, Harvard Medical School, Boston, and the Laboratories for Psychiatric Research and Psychotic Disorders Program of the Mailman Research Center, McLean Division of Massachusetts General Hospital, Belmont, MA 02178, USA
E. Marsh
Affiliation:
Departments of Psychiatry and Neuroscience Program, Harvard Medical School, Boston, and the Laboratories for Psychiatric Research and Psychotic Disorders Program of the Mailman Research Center, McLean Division of Massachusetts General Hospital, Belmont, MA 02178, USA
B. M. Cohen
Affiliation:
Departments of Psychiatry and Neuroscience Program, Harvard Medical School, Boston, and the Laboratories for Psychiatric Research and Psychotic Disorders Program of the Mailman Research Center, McLean Division of Massachusetts General Hospital, Belmont, MA 02178, USA
*
Correspondence

Abstract

Full neuropharmacological understanding of the atypical antipsychotic agent clozapine remains elusive. Antidopaminergic actions of most neuroleptics probably contribute to their antipsychotic benefits, but also to neurological side-effects. Clinical evidence of abnormalities of dopamine (DA) and serotonin (5-HT) in psychotic disorders is inconsistent, but there is substantial metabolic and post-mortem evidence for hyperactivity of noradrenalin (NA). Clozapine is only weakly antidopaminergic but is a potent antagonist at brain α1-adrenergic, 5-HT2-serotonergic, and muscarinic receptors. Its apparent limbic-over-extrapyramidal neuro-physiological selectivity can be mimicked by combining a typical neuroleptic with a central α1 antagonist. Clozapine strongly upregulates α1, but not DA, receptor abundance, and may supersensitise α1 but not DA receptors in rat brain. Clozapine also selectively increases activity of NA neurons and metabolic turnover in NA more than DA areas of rat brain, and also increases NA, but not DA or 5-HT, metabolites in human CSF. Potential psychotropic effects of selective central antiadrenergic agents may deserve reconsideration.

Type
Research Article
Copyright
Copyright © The Royal College of Psychiatrists 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albus, M., Engel, R. R., Muller, F., et al (1982) Experimental stress situations and the state of autonomic arousal in schizophrenic and depressive patients. International Pharmacopsychiatry, 17, 129135.CrossRefGoogle ScholarPubMed
Baldessarini, R. J. (1983) Biomedical Aspects of Mood Disorders and Their Treatment. Washington: American Psychiatric Press.Google Scholar
Baldessarini, R. J.(1990) Drugs and the treatment of psychiatric disorders. In Goodman and Gilman's The Pharmacologic Basis of Therapeutics (eds A. G. Gilman, L. S. Goodman, T. S. Rall, et al), pp. 383435. New York: Pergamon.Google Scholar
Baldessarini, R. J.(1992) Chemotherapy in Psychiatry: Principles and Practice, Third edition (in press). Cambridge, Mass: Harvard University Press.Google Scholar
Baldessarini, R. J., Marsh, E. R., Kula, N. S., et al (1990) Effects of isomers of hydroxyaporphines on dopamine metabolism in rat brain regions. Biochemical Pharmacology, 40, 417423.CrossRefGoogle ScholarPubMed
Baldessarini, R. J. & Frankenburg, F. R. (1991) Clozapine: A novel antipsychotic agent. New England Journal of Medicine, 324, 646754.Google ScholarPubMed
Berlant, J. L. (1986) Neuroleptics and reserpine in refractory psychoses. Journal of Clinical Psychopharmacology, 6, 180184.CrossRefGoogle ScholarPubMed
Berlant, J. L.(1987) One more look at propranolol for the treatment of refractory schizophrenia. Schizophrenia Bulletin, 13, 705714.CrossRefGoogle Scholar
Bird, E. D., Spokes, E. G. & Iversen, L. L. (1979) Brain norepinephrine and dopamine in schizophrenia. Science, 204, 9394.CrossRefGoogle ScholarPubMed
Breier, A., Wolkowicz, O. M., Roy, A., et al (1990) Plasma norepinephrine in chronic schizophrenia. American Journal of Psychiatry, 147, 14671470.Google ScholarPubMed
Campbell, A., Yeghiyan, S., Baldessarini, R. J., et al (1991) Selective antidopaminergic effects of S(+)N-n-propylnoraporphines in limbic vs extrapyramidal sites in rat brain: comparisons with typical and atypical antipsychotic agents. Psychopharmacology, 103, 323329.Google ScholarPubMed
Carlsson, A. (1988) The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology, 1, 179186.CrossRefGoogle ScholarPubMed
Castellani, S., Ziegler, M. G., Van Kammen, D. P., et al (1982) Plasma norepinephrine and dopamine-β-hydroxylase activity in schizophrenia. Archives of General Psychiatry, 39, 11451149.CrossRefGoogle ScholarPubMed
Chiodo, L. A. & Bunney, B. S. (1983) Typical and atypical neuroleptics: differential effects of chronic administration on the activity of A9 and A10 midbrain dopaminergic neurons. Journal of Neuroscience, 3, 16071619.CrossRefGoogle ScholarPubMed
Chiodo, L. A. & Bunney, B. S. (1985) Possible mechanisms by which repeated clozapine administration differentially affects the activity of two subpopulations of midbrain dopamine neurons. Journal of Neuroscience, 5, 25392544.CrossRefGoogle ScholarPubMed
Cohen, B. M. (1988) Neuroleptic drugs in the treatment of acute psychosis. In Current Trends in Psychopharmacology (eds D. E. Casey & A. V. Christensen), pp. 4761. Heidelberg: Springer.CrossRefGoogle Scholar
Cohen, B. M. & Lipinski, J. F. (1986a) Treatment of acute psychosis with non-neuroleptic agents. Psychosomatics, S27, 716.CrossRefGoogle Scholar
Cohen, B. M. & Lipinski, J. F.(1986b) In vivo potencies of antipsychotic drugs in blocking alpha-1 noradrenergic and dopamine D2 receptors: implications for drug mechanisms of action. Life Sciences, 39, 25712580.CrossRefGoogle ScholarPubMed
Crow, T. J., Baker, H. F., Cross, A. J., et al (1979) Monoamine mechanisms in chronic schizophrenia: post-mortem neurochemical findings. British Journal of Psychiatry, 134, 249256.CrossRefGoogle ScholarPubMed
Davidson, M. & Davis, J. L. (1988) A comparison of plasma homovanillic acid concentrations in schizophrenic patients and normal controls. Archives of General Psychiatry, 45, 561563.CrossRefGoogle ScholarPubMed
Farley, I. J., Price, K. S., McCullough, E., et al (1978) Norepinephrine in chronic paranoid schizophrenia: above-normal levels in limbic forebrain. Science, 200, 456458.CrossRefGoogle ScholarPubMed
Freedman, R., Kirch, D., Bell, J., et al (1982) Clonidine treatment of schizophrenia: double-blind comparison to placebo and neuroleptic drugs. Acta Psychiatrica Scandinavica, 65, 3545.CrossRefGoogle ScholarPubMed
Gattaz, W. F., Riederer, P., Reynolds, G. P., et al (1983) Dopamine and noradrenaline in the cerebrospinal fluid of schizophrenic patients. Psychiatry Research, 8, 243250.CrossRefGoogle ScholarPubMed
Gelernter, J. & Van Kammen, D. P. (1988) Schizophrenia: instability in norepinephrine, serotonin, and γ-aminobutyric acid systems. International Review of Neurobiology, 29, 309347.CrossRefGoogle ScholarPubMed
Gerner, R. H., Fairbanks, L., Anderson, G. M., et al (1984) Cerebrospinal fluid neurochemistry in depressed, manic, and schizophrenic patients compared with that of normal controls. American Journal of Psychiatry, 144, 15331540.Google Scholar
Giannini, A. J., Pascarzi, G. A., Loiselle, R. H., et al (1986) Comparison of clonidine and lithium in the treatment of mania. American Journal of Psychiatry, 143, 16081609.Google ScholarPubMed
Glazer, W. M., Charney, D. S. & Heninger, G. R. (1987) Noradrenergic function in schizophrenia. Archives of General Psychiatry, 44, 898904.CrossRefGoogle ScholarPubMed
Gomes, U. C. R., Shanley, B. C., Potgieter, L., et al (1980) Noradrenergic overactivity in chronic schizophrenia: evidence based on cerebrospinal fluid noradrenaline and cyclic nucleotide concentrations. British Journal of Psychiatry, 137, 346351.CrossRefGoogle ScholarPubMed
Goodwin, F. K. & Jamison, K. R. (1990) Manic-Depressive Illness, pp. 402502, 602-629. New York: Oxford.Google Scholar
Heal, D. J. (1984) Phenylephrine-induced activity in mice as a model of central α1-adrenoceptor function. Neuropharmacology, 23, 12411251.CrossRefGoogle Scholar
Hommer, D. W., Zahn, T. P., Pickar, D., et al (1984) Prazosin, a specific alpha1-noradrenergic receptor antagonist has no effect on symptoms but increases autonomic arousal in schizophrenic patients. Psychiatry Research, 11, 193204.CrossRefGoogle Scholar
Hornykiewicz, O. (1982) Brain catecholamines in schizophrenia - a good case for noradrenaline. Nature, 299, 484486.CrossRefGoogle ScholarPubMed
Jeste, D. V., Doongai, D. R. & Linnoila, M. (1984) Elevated norepinephrine in tardive dyskinesia. British Journal of Psychiatry, 144, 177180.CrossRefGoogle ScholarPubMed
Johnson, R. D., Iuvone, P. M. & Minneman, K. P. (1987) Regulation of alpha-1 adrenergic receptor density and functional responsiveness in rat brain. Journal of Pharmacology and Experimental Therapeutics, 242, 842849.Google ScholarPubMed
Jouvent, R., Lecrubier, Y., Puech, A. J., et al (1980) Antimanic effect of clonidine. American Journal of Psychiatry, 137, 12751276.Google ScholarPubMed
Karoum, F., Karson, C. N., Bigelow, L. B., et al (1987) Preliminary evidence of reduced combined output of dopamine and its metabolites in chronic schizophrenia. Archives of General Psychiatry, 44, 604607.CrossRefGoogle ScholarPubMed
Kemali, D. & Maj, M. (1986) Cerebrospinal fluid noradrenaline and schizophrenia. American Journal of Psychiatry, 143, 126129.Google ScholarPubMed
Kleinman, J. E., Karoum, F., Rosenblatt, J. E., et al (1982) In Biological Markers in Psychiatry and Neurology (eds E. Usdin & I. Hanin), pp. 6776. New York: Pergamon.CrossRefGoogle Scholar
Koslow, S. H., Maas, J. W., Bowden, C. L., et al (1983) CSF and urinary biogenic amines and metabolites in depression and mania: a controlled, univariate analysis. Archives of General Psychiatry, 40, 9991010.CrossRefGoogle Scholar
Lader, M. (1988) $bT-Adrenoceptor antagonists in neuropsychiatry: an update. Journal of Clinical Psychiatry, 49, 213223.Google ScholarPubMed
Lake, C. R., Sternberg, D. & Van Kammen, D. (1980) Schizophrenia: elevated cerebrospinal fluid norepinephrine. Science, 207, 331333.CrossRefGoogle ScholarPubMed
Lieberman, J., Johns, C., Pollack, S., et al (1991) Effects of clozapine on amine metabolites in cerebrospinal fluid of schizophrenic patients. In Schizophrenia Research (eds C.A. Tamminga & S. C. Schultz), pp. 341349. New York: Raven.Google Scholar
Lindström, J. H. (1985) Low HVA and normal 5-HIAA cerebrospinal fluid levels in drug-free schizophrenic patients compared to healthy volunteers: correlations to symptomatology and family history. Psychiatry Research, 14, 265273.CrossRefGoogle ScholarPubMed
Lipinski, J. F., Cohen, B. M., Zubenko, G. S., et al (1987) Adrenoreceptors and the pharmacology of affective illness: a unifying hypothesis. Life Sciences, 40, 19471963.CrossRefGoogle Scholar
Meltzer, H. Y. & Stahl, S. M. (1976) The dopamine hypothesis of schizophrenia: a review. Schizophrenia Bulletin, 2, 1976.CrossRefGoogle ScholarPubMed
Menon, M. K., Lloyd, R. L. & Fitten, L. J. (1990) Antagonism of the hypothermic effect of clozapine in mice by centrally-active α2-drenergic antagonists and α1-adrenergic agonists. Psychopharmacology, 101, 6772.CrossRefGoogle Scholar
Naber, D., Finkbeiner, C., Fischer, B., et al (1980) Effect of long-term neuroleptic treatment on prolactin and norepinephrine levels in serum of chronic schizophrenics: Relations to psychopathology and extrapyramidal symptoms. Neuropsychobiology, 6, 181189.CrossRefGoogle ScholarPubMed
Peroutka, S. J., U'Prichard, D. C., Greenberg, D. A., et al (1977) Neuroleptic drug interactions with norepinephrine alpha receptor binding sites in rat brain. Neuropharmacology, 16, 549556.CrossRefGoogle ScholarPubMed
Pickar, D., Breier, A., Hsiao, J. K., et al (1990) Cerebrospinal fluid and plasma monoamine metabolites and their relation to psychosis. Archives of General Psychiatry, 47, 641648.CrossRefGoogle ScholarPubMed
Ramirez, O. A. & Wang, R. Y. (1986) Locus coeruleus norepinephrine-containing neurons: effects produced by acute and subchronic treatment with antipsychotic drugs and amphetamine. Brain Research, 362, 165170.CrossRefGoogle ScholarPubMed
Robinson, S. E., Berney, S., Misra, R., et al (1979) The relative role of dopamine and norepinephrine receptor blockade in the action of antispychotic drugs: metoclopramide, thiethylperazine, and molindone as pharmacological tools. Psychopharmacology, 64, 141147.CrossRefGoogle Scholar
Sternberg, D. E., Charney, D. S., Heninger, G. R., et al (1982) Impaired presynaptic regulation of norepinephrine in schizophrenia. Archives of General Psychiatry, 39, 285289.CrossRefGoogle ScholarPubMed
Van Kammen, D. P. & Antelman, S. (1984) Impaired noradrenergic transmission in schizophrenia? A mini-review. Life Sciences, 34, 14031413.CrossRefGoogle Scholar
Van Kammen, D. P. & Gelernter, J. (1987) Biochemical instability in schizophrenia: I. The norepinephrine system. In Psychopharmacology, The Third Generation of Progress (ed. Meltzer, H. Y.), pp. 745752. New York: Raven.Google Scholar
Van Kammen, D. P., Peters, J., Yao, J., et al (1990) Norepinephrine in acute exacerbations of chronic schizophrenia. Archives of General Psychiatry, 47, 161168.CrossRefGoogle ScholarPubMed
Vigouret, J. M. & Herrling, P. (1990) Pharmacology of Sandoz-210-085 (research report). Berne, Switzerland: Sandoz Research Institute.Google Scholar
White, F. J. & Wang, R. Y. (1983) Differential effects of classical and atypical antipsychotic drugs on A9 and A10 dopamine neurons. Science, 221, 10541057.CrossRefGoogle ScholarPubMed
Zander, K. J., Fischer, B., Zimmer, R., et al (1981) Long-term neuroleptic treatment of chronic schizophrenic patients: Clinical and biochemical effects of withdrawal. Psychopharmacology, 73, 4347.CrossRefGoogle ScholarPubMed
Submit a response

eLetters

No eLetters have been published for this article.