Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-06-07T16:29:28.815Z Has data issue: false hasContentIssue false

Characterisation of porous media by NMR imaging and flow-diffraction

Published online by Cambridge University Press:  15 October 1999

C. De Panfilis*
Affiliation:
Department of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
K. J. Packer
Affiliation:
Department of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
Get access

Abstract

The echo attenuation function EΔ(q) and the displacement probability P(Z,Δ) for water flowing through a bed of 0.3 mm glass beads has been measured by means of Pulsed Gradient Spin Echo (PGSE NMR). The encoding time Δ and the flow rates used in the experiments were chosen such that the average displacement was at least one bead diameter. The EΔ(q) shows, as expected, a diffraction peak at about the inverse of the bead diameter. For longer times EΔ(q) shows another peak at about the inverse of twice the bead diameter. In analogy with PGSE NMR in presence of diffusion in a closed system, these data suggest that the pore space correlation function or features closely related to it, can be accessed through the PGSE experiment with flow. The conditions, which lead to this possibility, are discussed and supported with the results of network modelling of fluid flow in a periodic structure. The true pore space correlation function has been determined using the Patterson function approach applied to a NMR image data set. This has been compared with the one obtained by PGSE NMR with flow. The displacement distributions P(Z,Δ) for fluid flow/diffusion in this system also show structural information and, it is suggested, can be regarded as a product of the pore space correlation function with an evolving smooth distribution which starts as an exponential and tends to a Gaussian in the longer time limit.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

P.T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy (Clarendon, Oxford, 1991).
Barrall, G.A., Frydman, L., Chingas, G.C., Science 255, 714 (1992). CrossRef
G.C. Chingas, L. Frydman, G.A. Barrall, J.S. Harwood, NMR Microscopy: Methods and Applications (B. Blümich; VCH 1992).
Kärger, J., Pfeiffer, H., Heink, W., J. Magn. Res. 51, 1 (1983).
Callaghan, P.T., Coy, A., McGowan, D., Packer, K.J., Zelaya, F.O., Nature 351, 467 (1991). CrossRef
Cory, D.G., Garroway, A.N., Magn. Res. Med. 14, 435 (1990). CrossRef
Sen, P.N., Hürlimann, M.D., J. Chem. Phys. 101, 5423 (1994) CrossRef
Hürlimann, M.D., de Swiet, T.M., Sen, P.N., J. Non-Cryst. Solids 182, 198 (1995) CrossRef
P.T. Callaghan, A. Coy, T.P.J. Halpin, D. MacGowan, K.J. Packer, F.O. Zelaya, J. Chem. Phys. 97, 1, 651, (1992).
Packer, K.J., Tessier, J.J., Mol. Phys. 87, 267 (1996).
Ding, A., Candela, D., Phys. Rev. E 54, 656 (1996). CrossRef
Seymour, J.D., Callaghan, P.T., J. Magn. Res. A 122, 90 (1996). CrossRef
Lebon, L., Leblond, J., Hulin, J.P., Phys. Fluids 9, 481 (1997). CrossRef
Manz, B., Alexander, P., Gladden, L.F., Phys. Fluids 11, 259 (1999). CrossRef
D.C. Champeney, Fourier Transformations and Their Physical Applications (Academic Press, New York, 1973).
Mansfield, P., Grannell, P.K., Phys. Rev. B 12, 3618 (1975). APS Link not valid for this citation CrossRef
Patterson, A.L., Phys. Rev. 46, 372 (1934). CrossRef
Stejskal, E.O., Tanner, J.E., J. Chem. Phys. 42, 288 (1965). CrossRef
Stejskal, E.O., J. Chem. Phys. 43, 3597 (1965). CrossRef
Callaghan, P.T., MacGowan, D., Packer, K.J., Zelaya, F.O., J. Magn. Res. 90, 177 (1990).
Mitra, P.P., Sen, P.N., Schwartz, L.M., Le Doussal, P., Phys. Rev. Lett. 68, 3555 (1992). CrossRef
Cotts, R.M., Hoch, M.J.R., Sun, T., Markert, J.T., J. Magn. Res. 83, 252 (1989).
Lucas, A.J., Gibbs, S.J., Jones, E.W.G., Peyron, M., Derbyshire, A.D., Hall, L.D., J. Magn. Res. A 104, 273 (1993). CrossRef
J. Bear, Dynamics of fluids in porous media (American Elsevier, New York, 1972).
Berryman, J.G., Blair, S.C., J. Appl. Phys. 60, 1930 (1986). CrossRef
R. Priemer, Introductory Signal Processing (World Scientific, Singapore 1990), p. 364.
Coelho, D., Thovert, J.-F., Adler, P.M., Phys. Rev. E 55, 1959 (1997). CrossRef
McDougall, S.R., Sorbie, K.S., Petrol. Geosci. 3, 161 (1997). CrossRef
Lebon, L., Oger, L., Leblond, J., Hulin, J.P., Martys, N.S., Schwartz, L.M., Phys. Fluids 8, 293 (1996). CrossRef
Kutsovsky, Y.E., Scriven, L.E., Davis, H.T., Hammer, B.E., Phys. Fluids 8, 863 (1996). CrossRef
Amin, M.H.G., Gibbs, S.J., Chorley, R.J., Richards, K.S., Carpenter, T.A., Hall, L.D., Proc. R. Soc. Lond. A 453, 489 (1997). CrossRef
Mansfield, P., Bencsik, M., Magn. Res. Imag. 16, 451 (1998). CrossRef
van As, H., Palstra, W., Tallarek, U., van Dusschoten, D., Magn. Res. Imag. 16, 569 (1998). CrossRef
Tessier, J.J., Packer, K.J., Thovert, J.F., Adler, P.M., AICHE J. 43, 1653 (1997). CrossRef
Stapf, S., Packer, K.J., Graham, R.G., Thovert, J.F., Adler, P.M., Phys. Rev. E 58, 6206 (1998). CrossRef