Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-03T01:42:23.528Z Has data issue: false hasContentIssue false

Formation of anti-site defects and bismuth overstoichiometry in p-type Sb2−xBixTe3 thermoelectric crystals

Published online by Cambridge University Press:  28 March 2008

G. Kavei*
Affiliation:
Material and Energy Research Centre, P. O. Box 14155-4777, Tehran, Iran
M. A. Karami
Affiliation:
Material and Energy Research Centre, P. O. Box 14155-4777, Tehran, Iran
Get access

Abstract

P-type Sb2−xBixTe3 crystals with various chemical compositions (x = 0.40, 0.44, 0.47, 0.50, 0.53, 0.56 and 0.60) were fabricated by zone melting method. Transmission electron microscopy and energy dispersive X-ray microanalysis were performed to characterize the evolutions of defects on the sites of Bi, Te and Sb atoms in the lattice. Study of Sb2−xBixTe3 structure reveals the formation of Bi2Te3 in which native defects are a consequence of overstoichiometry of Bi atoms in Bi2Te3 single crystal. Thermoelectric properties, including Seebeck coefficient (α), electrical conductivity (σ), thermal conductivity (k), and Hall constant were measured at room temperature. In terms of thermoelectric properties, increasing Bi2Te3 content (x) decreased carrier (hole) concentration (and σ, as a result) and increased α. The maximum figure-of-merit (Z = α2σ/k) of 2.7×10−3 K−1 was obtained at about 300 K for 25%Bi2Te3 − 75%Sb2Te3 with 3 wt% excess Te recommended for thermoelectric properties modification. Added Te is considered not only as a dopant, but also to compensate the deficiency of Tellurium understoichiometry. The results compared with reports of several authors to evaluate the dependency of parameters on sites of the atoms. The novelty of this work is to present the sites of the atoms in the lattice of the ternary compounds and the effect of defects occurred due to the atomic sizes of the Bi, Sb and Te.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A.F. Ioffe, Semiconductor thermoelements and thermoelectric cooling (London, Infosearch, 1957)
H. Krebs, F. Enke Verlag, Stuttgart, Grundzüge der Anorganishen Kristallchemie 239 (1968)
H.J. Goldsmid, Thermoelectric Refrigeration (Plenum Press, New York, 1964), p. 113
Beyer, H., Nurnus, J., Böttner, H., Lambrecht, A., Wagner, E., Bauer, G., Physica E 13, 965 (2002) CrossRef
Sokolov, O.B., Skipidarov, S.Ya., Duvankov, N.I., J. Cryst. Growth 236, 181 (2000) CrossRef
Ettenberg, M.H., Maddux, J.R., Taylor, P.J., Jesser, W.A., Rosi, F.D., J. Cryst. Growth 179, 495 (1997) CrossRef
Zemskov, V.S., Belaya, A.D., Beluy, U.S., Kozhemyakin, G.N., J. Cryst. Growth 212, 161 (2000) CrossRef
Yang, J., Aizawa, T., Yamamoto, A., Ohta, T., J. Alloys Compounds 309, 225 (2000) CrossRef
Heon, P.H., Young, W.C., Ji, Y.B., Jae, D.S., J. Phys. Chem. Solids 55, 1233 (1994) CrossRef
J.W. Sharp, G.S. Nolas, E.H. Volckmann, Thermoelectric materials New Direction and approaches, edited by T.M. Tritt (MRS, 1998), 91
Hwang, Chang-Won, Hyun, Dow-Bin, Ha, Heon-Phil, Oh, Tae Sung, J. Mater. Sci. 36, 3291 (2001) CrossRef
Xi'an Fan, Junyou, Yang, Wen Zhu, Siqian Bao, J. Alloys Compounds 448, 308 (2008)
Huong, Ngo Thu, Setou, Yusuke, Nakamoto, Go, Kurisu, Makio, Kajihara, Takeshi, Mizukami, Hiroyuki, Sano, Seijiro, J. Alloys Compounds 368, 44 (2004) CrossRef
Kavei, G., Khashachi, A.A., J. Thermoelectricity 3, 40 (2005)
A.V. Petrov, Thermoelectric Properties of Semiconductors, edited by V.A. Kutasov (1964), pp. 17-22
Slack, G.A., Phys. Rev. 122, 1451 (1961) CrossRef
R. Taylor, CRC hand book of thermoelectric, edited by M.D. Rowe (CRC press, Boca Raton, FL, 1995), p. 165
Pecheur, P., Toussaint, G., J. Phys. Chem. Solids 55, 237 (1994) CrossRef
Ionescu, R., Jaklovszky, J., Chiculita, A., Phys. Stat. Sol. (a) 27, 27 (1975) CrossRef
Z. Stray, J. Navratil, T. Plechacek, XIII Int. Conf. Thermoelectric, Kansas city (1994), 286
Plechácek, J. Navrátil, J. Horák, Bachan, A. Krejcová, P. Lost'ák, Solid State Ionics 177, 3513 (2007) CrossRef
M. Strodeur, Thesis B, Universitat Halle Wittenberg, 1986
Pancir, J., Cll. Czech. Chem. Comm. 45, 2452 (1980) CrossRef
Huckel, E., J. Phys. 70, 204 (1931)
Sherrer, H., Hammou, B., Sherrer, S., Phys. Lett. A 130, 161 (1988) CrossRef
J. Horak, P. Lostak, Transport in Ver-bindungshalbleitern (1981) (Martin-Luther Universital, Halle Wittenberg 1982), 130
Horak, J., Lostak, P., Benes, L., Phil. Mag. B 50, 665 (1984) CrossRef
Lostak, P., Horak, J., Koudelra, L., Phys. Status Solid (a) 76, K71 (1983) CrossRef
Plecha'cek, T., Navra'til, J., Hora'k, J., J. Solid State Chem. 165, 35 (2002) CrossRef
Horak, J., Lostak, P., Koudelra, L., Novotuy, R., Solidi St. Commun. 55, 1031 (1985) CrossRef
Horak, J., Cermak, K., Koudelka, L., J. Phys. Chem. Solids 47, 805 (1986) CrossRef
Brebrick, R.F., J. Phys. Chem. Solids 30, 719 (1969) CrossRef
Kim, H.C., Oha, T.S., D.B. Hyunb. J. Phys. Chem. Solids 61, 743 (2000) CrossRef
N.W. Ashcroft, N.D. Mermin, Solid State Physics, (Holt, Rinehhart and Winston, 1976), Chaps. 16, 26
C.M. Bhandari, CRC hand book of thermoelectric edited by M.D Rowe (CRC press, Boca Raton, FL, 1995), p.55
Y.I. Ravich, CRC hand book of thermoelectric, edited by M.D. Rowe, (CRC press, Boca Raton, FL, 1995), p.67
Shin, H.S., Ha, H.P., Hyun, D.B., Shim, J.D., Lee, D.H., J. Phys. Chem. Solids 58, 671 (1997) CrossRef
Park, K., Seo, J.H., Cho, D.C., Choi, B.H, Lee, C.H., Materials Science and Engineering B 88, 103 (2002) CrossRef
H. Scherrer, S. Scherrer, CRC Handbook of Thermoelectrics, edited by D.M. Rowe (CRC Press, Boca Raton, 1994), p. 211