Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-01T20:56:21.909Z Has data issue: false hasContentIssue false

High-gradient electron acceleration in a plasma-loaded wiggler

Published online by Cambridge University Press:  15 March 1999

V. Petrillo*
Affiliation:
Dipartimento di Fisica, Università di Milano, Istituto Nazionale di Fisica Nucleare and Istituto Nazionale di Fisica della Materia, via Celoria 16, 20133 Milano, Italy
C. Maroli
Affiliation:
Dipartimento di Fisica, Università di Milano, Istituto Nazionale di Fisica Nucleare and Istituto Nazionale di Fisica della Materia, via Celoria 16, 20133 Milano, Italy
Get access

Abstract

Detailed derivations and further analysis are presented of a recent concept for a plasma-based accelerator scheme incorporating a strong circularly polarised magnetic wiggler field producing relativistic-strength diamagnetic transverse plasma currents. The increase in the plasma Lorentz factor leads to a substantial increase in the longitudinal component of the wave electric field and therefore of the acceleration rate. It is also found that ultra-high acceleration gradients are possible with relatively low plasma densities and long wave lengths. It also appears possible that the transverse wiggling motion of the electrons of the beam is able to delay the dephasing with the accelerating wave leading to much higher values of the energy gained by the beam at saturation and even electron bunches that have been injected with the "wrong" phase seem to be able to reverse their motion and accelerate to very high energies in short distances.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tajima, T., Dawson, J.M., Phys. Rev. Lett. 43, 267 (1979). CrossRef
Nakajima, K. et al., Nucl. Instr. Meth. A 292, 12 (1990). CrossRef
Rosenzweig, J.B. et al., Phys. Rev. Lett. 61, 98 (1988). CrossRef
Clayton, C.E. et al., Phys. Rev. Lett. 70, 37 (1993). CrossRef
Kitagawa, Y. et al., Phys. Rev. Lett 68, 48 (1992). CrossRef
Ebrahim, N.A., J. Appl. Phys. 76, 7645 (1994). CrossRef
F. Amiranoff et al., in Advanced Accelerator Concepts, AIP Conf. Proc. 335, edited by P. Schoessov (New York, 1995), pp. 612-634.
Nakajima, K. et al., Phys. Rev. Lett. 74, 4428 (1995). CrossRef
Coverdale, C. et al., Phys. Rev. Lett. 74, 4659 (1995). CrossRef
Modena, A. et al., Nature 337, 606 (1995). CrossRef
E. Esarey, P. Sprangle, J. Krall, A. Ting, IEEE Trans. Plasma Sci. PS-24, 252 (1996).
Katsouleas, T., Dawson, J.M., Phys. Rev. Lett. 51, 392 (1983). CrossRef
Chernikov, A.A., Schmidt, G., Neishtadt, A.I., Phys. Rev. Lett. 62, 1507 (1992). APS Link not valid for this citation CrossRef
Karney, C.F.F., Phys. Fluids 21, 1584 (1978). CrossRef
Carioli, S.M., Chernikov, A.A., Neishtadt, A.I., Phys. Scripta 40, 707 (1989). CrossRef
Rath, S., Kaw, P.K., Phys. Fluids 31, 1300 (1988). CrossRef
Petrillo, V., Maroli, C., Phys. Plasmas 3, 1773 (1996). CrossRef
Maroli, C., Petrillo, V., Bonifacio, R., Phys. Rev. Lett. 76, 3578 (1996). CrossRef
O'Neil, T.M., Winfrey, J.H., Malmberg, J.H., Phys. Fluids 14, 1204 (1971). CrossRef