Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-11T08:38:29.588Z Has data issue: false hasContentIssue false

Optical and electrical properties of bi-layers organic devices

Published online by Cambridge University Press:  13 October 2014

Hager Trad
Affiliation:
Université de Monastir, Faculté de Pharmacie de Monastir, Avenue Avicenne, 5000 Monastir, Tunisia
Ahlem Rouis*
Affiliation:
Laboratoire d’interfaces et Matériaux Avancés (LIMA), Faculté des sciences de Monastir, Avenue de l’environnement, 5000 Monastir, Tunisia
Jöel Davenas
Affiliation:
Ingénierie des Matériaux Polymères (IMP), UMR CNRS 5223, Université Claude Bernard-Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France
Mustapha Majdoub
Affiliation:
Laboratoire d’interfaces et Matériaux Avancés (LIMA), Faculté des sciences de Monastir, Avenue de l’environnement, 5000 Monastir, Tunisia
Get access

Abstract

The influence of interfacial charges on the device characteristics of bi-layers structure LEDs with poly[5-methoxy-2-octyloxy-1,4-phenylenevinylene] (MO-PPV) as active polymer layer is investigated. The concept to improve device performance is presented using: a diacetate cellulose (DAC) and a new synthetized 5-{2-(2-chloroethoxy)ethoxy}-2-{(E)-(2-pyridyl)azo}phenol (PDEG) components. The DAC and mixed (DAC+PDEG) layers were inserted between indium tin oxide (ITO) and MO-PPV polymer. The optical properties (UV-Vis) of MO-PPV, PDEG and mixed (DAC+PDEG) in solutions were studied and compared to those on thin films. Detailed current-voltage measurements of the bi-layers devices showed improvements of the threshold voltage (Vth) of the ITO/(DAC+PDEG)/MO-PPV/Al device attributed to the enhancement of carriers injection and transport resulted from the modified electrode structures. Conduction mechanisms of structure LEDs were matched with space-charge-limited current (SCLC) one. The impedance spectra for all devices can be discussed in terms of an equivalent circuit model designed as a parallel resistor Rp and capacitor Cp network in series with resistor Rs. The ITO/(DAC+PDEG)/MO-PPV/Al device showed the lowest impedance attributed to the removal of contaminants and to changes in the work function of ITO. The frequency-dependent electrical properties of the ITO/(DAC+PDEG)/MO-PPV/Al structure is analyzed by impedance spectroscopy as function of bias. We have extracted numerical values of the equivalent circuit model parameters by fitting experimental data. Their evolution with bias voltages has shown that the SCLC mechanism is characterized by an exponential trap distribution.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Burroughes, H., Bradley, D.D.C., Brown, A.R., Marks, R.N., Mackay, K., Friend, R.H., Burn, P.L., Holmes, A.B., Nature 347, 539 (1990)CrossRef
Friend, R.H., Gymer, R.W., Holmes, A.B., Burroughes, J.H., Marks, R.N., Taliani, C., Bradley, D.D.C., Dos Santos, D.A., Bredas, J.L., Logdlund, M.L., Salaneck, W.R., Nature 397, 121 (1999)CrossRef
Horowitz, G., Adv. Mater. (1998) 10, 3653.0.CO;2-U>CrossRef
Yu, G., Pakbaz, K., Heeger, A.J., Appl. Phys. Lett. 64, 3422 (1994)CrossRef
Campbell, I.H., Kress, J.D., Martin, R.L., Smith, D.L., Barashkov, N.N., Ferraris, J.P., Appl. Phys. Lett. 71, 3528 (1997)CrossRef
Huang, Q., Cui, J., Veinot, J.G.C., Yan, H., Marks, T.J., Appl. Phys. Lett. 82, 33 (2003)
Hu, W., Manabe, K., Furukawa, T., Matsumura, M., Appl. Phys. Lett. 80, 2640 (2002)CrossRef
Kim, S.Y., Lee, J.-L., Kim, K.-B., Tak, Y.-H., Appl. Phys. Lett. 86, 133504 (2005)CrossRef
Osada, T., Kugler, Th., Broms, P., Salaneck, W.R., Synth. Met. 96, 77 (1998)CrossRef
Suess, C., Wenzl, F.P., Jakopic, G., Wuchse, M., Muellegger, S., Koch, N., Haase, A., Lamprecht, K., Schatzmayr, M., Mitterbauer, C., Hofer, F., Leising, G., Surf. Sci. 507, 473 (2002)CrossRef
Besbes, S., Ltaief, A., Reybier, K., Ponsonnet, L., Jaffrezic, N., Davenas, J., Ben Ouada, H., Synth. Met. 138, 197 (2003)CrossRef
Kim, J.S., Granstrom, M., Friend, R.H., Johansson, N., Salaneck, W.R., Daik, R., Feast, W.J., Cacialli, F., J. Appl. Phys. 84, 6859 (1998)CrossRef
Bradley, D.D.C., Curr. Opin. Solid State Mater. Sci. 1, 789 (1996)CrossRef
Brown, T.M., Kim, J.S., Friend, R.H., Cacialli, F., Daik, R., Feast, W.J., Appl. Phys. Lett. 75, 1679 (1999)CrossRef
Yang, Y., Heeger, A.J., Appl. Phys. Lett. 64, 1245 (1994)CrossRef
Kim, S., Hsu, C., Zhang, C., Skulason, H., Uckert, F., LeCloux, D., Cao, Y., Parker, I., J. Soc. Inf. Disp. 5, 14 (2004)
Yan, C.H., He, G.H., Zheng, J.R., Li, Y.F., Synth. Met. 121, 1343 (2001)
Troadec, D., Veriot, G., Antony, R., Moliton, A., Synth. Met. 124, 49 (2001)CrossRef
Choulis, S.A., Choong, V.-E., Patwardhan, A., Mathai, M.K., So, F., Adv. Funct. Mater. 16, 1075 (2006)CrossRef
Nam, E., Park, H., Park, K., Moon, M.R., Sohn, S., Jung, D., Yi, J., Chae, H., Kim, H., Thin Solid Films 517, 4131 (2009)CrossRef
, Z., Deng, Z., Zheng, J., Xu, D., Chen, Z., Zhou, E., Wang, Y., Vacuum 84, 1287 (2010)CrossRef
Heeger, A.J., Parker, I.D., Yang, Y., Synth. Met. 67, 24 (1994)CrossRef
Trad, H., Majdoub, M., Davenas, J., Mater. Sci. Eng. C 26, 334 (2006)CrossRef
Wang, Q., Ito, S., Grätzel, M., Fabregat-Santiago, F., Mora-Seró, I., Bisquert, J., Bessho, T., Imai, H., J. Phys. Chem. B 110, 25210 (2006)CrossRef
Bisquert, J., Phys. Rev. B 77, 235203 (2008)CrossRef
Lin, J., Weis, M., Taguchi, D., Manaka, T., Iwamoto, M., Thin Solid Films 518, 448 (2009)CrossRef
Ono, R., Kiy, M., Biaggio, I., Guenter, P., Proc. SPIE 4105, Organic Light-Emitting Materials and Devices IV, 299 (February 2, 2001), DOI: 10.1117/12.416908
Okachi, T., Nagase, T., Kobayashi, T., Naito, H., Jpn J. Appl. Phys. 47, 8965 (2008)CrossRef
Rouis, A., Dridi, C., Ben Chaâbane, R., Davenas, J., Aeiyach, S., Ben Ouada, H., Dumazet-Bonnamour, I., Halouani, H., Mater. Sci. Eng. C 26, 240 (2006)CrossRef
Bouzitoun, M., Dridi, C., Ben Chaâbane, R., Ben Ouada, H., Gam, H., Majdoub, M., Sci. Technol. Adv. Mater. 7, 772 (2006)CrossRef
Benzarti-Ghédira, M., Hrichi, H., Jaballah, N., Ben Chaâbane, R., Majdoub, M., Ben Ouada, H., Physica B 407, 1051 (2012)CrossRef
Elakrmi, E., Ben Chaâbane, R., Ben Ouada, H., Akademeia.ca 2, 1923 (2012)
Echabaane, M., Rouis, A., Bonnamour, I., Ben Ouada, H., Measurement 46, 2411 (2013)CrossRef
Hrichi, H., Benzarti-Ghédira, M., Jaballah, N., Ben Chaâbane, R., Majdoub, M., Ben Ouada, H., Sens. Transducers 27, 209 (2014)
Le Rendu, P., Nguyen, T.P., Carrois, L., Synth. Met. 138, 285 (2003)CrossRef
Laidani, N., Bartali, R., Gottardi, G., Anderle, M., Cheyssac, P., J. Phys. Condens. Matter. 20, 15216 (2008)CrossRef
Mok, T.M., O’Leary, S.K., J. Appl. Phys. 102, 113525 (2007)CrossRef
O’Learly, S.K., Lim, P.K., Solid State Commun. 104, 17 (1997)
Kao, K.C., Hwang, W., Electrical Transport in Solids (Oxford Pergamon Press, New York, 1981)Google Scholar
Lampert, M.A., Mark, P., Current Injection in Solids (Academic Press, New York, 1970)Google Scholar
Ross Macdonald, J., Impedance Spectroscopy: Emphasizing Solid Materials and Analysis (John Wiley & Sons, New York, 1987)Google Scholar
Jonsher, A.K., Thin Solid Films 1, 213 (1967)CrossRef
Kim, S.H., Choi, K.H., Lee, H.M., Hwang, D.H., Do, L.M., Chu, H.Y., Zyung, T., J. Appl. Phys. 87, 882 (2000)CrossRef
Jonscher, A.K., Dielectric Relaxation in Solids (Chelsea Dielectrics, London, 1983)Google Scholar
Campbell, A.J., Bradley, D.D.C., Lidzey, D.G., J. Appl. Phys. 82, 6326 (1997)CrossRef