Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-06-10T15:12:37.989Z Has data issue: false hasContentIssue false

Super-resolution thermal ghost imaging based on deconvolution

Published online by Cambridge University Press:  17 June 2014

Zhipeng Chen
Affiliation:
State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Lab on Navigation and Location-Based Service, Department of Electronic Engineering, Shanghai Jiaotong University, 200240 Shanghai, P.R. China College of Electronics and Information, Shanghai Dianji University, 200240 Shanghai, P.R. China
Jianhong Shi*
Affiliation:
State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Lab on Navigation and Location-Based Service, Department of Electronic Engineering, Shanghai Jiaotong University, 200240 Shanghai, P.R. China
Yuan Li
Affiliation:
College of Electronics and Information, Shanghai Dianji University, 200240 Shanghai, P.R. China
Qing Li
Affiliation:
College of Electronics and Information, Shanghai Dianji University, 200240 Shanghai, P.R. China
Guihua Zeng
Affiliation:
State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Lab on Navigation and Location-Based Service, Department of Electronic Engineering, Shanghai Jiaotong University, 200240 Shanghai, P.R. China
Get access

Abstract

The resolution of classical imaging is limited by the Rayleigh diffraction limit, whereas ghost imaging can overcome this diffraction limit and enhance the resolution. In this paper, we propose a super-resolution thermal ghost imaging scheme based on deconvolution, which can further improve the imaging resolution. Because the traditional thermal ghost imaging result is the convolution between the original image of the object and the correlation function, we can use deconvolution algorithm to decrease the effect of convolution and enhance the imaging resolution. Actually, the correlation function of ghost imaging system is just the point spread function (PSF) of classical imaging system. However, PSF is hard to obtain in classical imaging system, and it is easy to obtain in ghost imaging system. So deconvolution algorithm can be easily used in the ghost imaging system, and the imaging resolution can increases 2–3 times in practice.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pittman, T.B., Shih, Y.H., Strekalov, D.V., Sergienko, A.V., Phys. Rev. A 52, R3429 (1995)CrossRef
Gatti, A., Brambilla, E., Bache, M., Lugiato, L.A., Phys. Rev. Lett. 93, 093602 (2004)CrossRef
Ferri, F., Magatti, D., Gatti, A., Bache, M., Brambilla, E., Lugiato, L.A., Phys. Rev. Lett. 94, 183602 (2005)CrossRef
Zhang, M., Wei, Q., Shen, X., Liu, Y., Liu, H., Cheng, J., Han, S., Phys. Rev. A 75, 021803 (2007)CrossRef
Shapiro, J.H., Phys. Rev. A 78, 061802 (2008)CrossRef
Erkmen, B.I., Shapiro, J.H., Phys. Rev. A 79, 023833 (2009)CrossRef
Meyers, R., Deacon, K.S., Shih, Y., Phys. Rev. A 77, 041801 (2008)CrossRef
Bromberg, Y., Katz, O., Silberberg, Y., Phys. Rev. A 79, 053840 (2009)CrossRef
Hardy, N.D., Shapiro, J.H., Phys. Rev. A 84, 063824 (2011)CrossRef
Wang, C., Zhang, D., Bai, Y., Chen, B., Phys. Rev. A 82, 063814 (2010)CrossRef
Zerom, P., Chan, K.W.C., Howell, J.C., Boyd, R.W., Phys. Rev. A 84, 061804 (2011)CrossRef
Zerom, P., Shi, Z., O’Sullivan, M.N., Chan, K.W.C., Krogstad, M., Shapiro, J.H., Boyd, R.W., Phys. Rev. A 86, 063817 (2012)CrossRef
D’Angelo, M., Valencia, A., Rubin, M.H., Shih, Y., Phys. Rev. A 72, 013810 (2005)CrossRef
Bai, Y., Han, S., Phys. Rev. A 76, 043828 (2007)CrossRef
Cao, D.-Z., Xiong, J., Zhang, S.-H., Lin, L.-F., Gao, L., Wang, K., Appl. Phys. Lett. 92, 201102 (2008)CrossRef
Liu, J., Shih, Y., Phys. Rev. A 79, 023819 (2009)CrossRef
Liu, Y.-C., Kuang, L.-M., Phys. Rev. A 83, 053808 (2011)CrossRef
Xi-Hao, C., Agafonov, I.N., Kai-Hong, L., Liu, Q., Xian, R., Chekhova, M.V., Wu, L.-A., Opt. Lett. 35, 1166 (2010)
Iskhakov, T., Allevi, A., Kalashnikov, D.A., Sala, V.G., Takeuchi, M., Bondani, M., Chekhova, M., Eur. Phys. J. Special Top. 199, 127 (2011)CrossRef
Katz, O., Bromberg, Y., Silberberg, Y., Appl. Phys. Lett. 95, 131110 (2009)CrossRef
Ferri, F., Magatti, D., Lugiato, L.A., Gatti, A., Phys. Rev. Lett. 104, 253603 (2010)CrossRef
Luo, K.-H., Huang, B.-Q., Zheng, W.-M., Wu, L.-A., Chin. Phys. Lett. 29, 074216 (2012)CrossRef
Shih, Y., International Conference on Quantum Information Optical Society of America, 2008
Mandel, L., Wolf, E., Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995)CrossRefGoogle Scholar
Lucy, L., Astron. J. 79, 745 (1974)CrossRef
Richardson, W.H., J. Opt. Soc. Am 62, 55 (1972)CrossRef
Han, S., Chinese Phys. 15, 2002 (2006)CrossRef