Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-01T22:54:11.190Z Has data issue: false hasContentIssue false

Burgess Shale-type Preservation and its Distribution in Space and Time

Published online by Cambridge University Press:  21 July 2017

Robert R. Gaines*
Affiliation:
Geology Department, Pomona College, 185 E. Sixth St., Claremont, CA 91711 USA
Get access

Abstract

Burgess Shale-type fossil assemblages provide a unique record of animal life in the immediate aftermath of the so-called “Cambrian explosion.” While most soft-bodied faunas in the rock record were conserved by mineral replication of soft tissues, Burgess Shale-type preservation involved the conservation of whole assemblages of soft-bodied animals as primary carbonaceous remains, often preserved in extraordinary anatomical detail. Burgess Shale-type preservation resulted from a combination of influences operating at both local and global scales that acted to drastically slow microbial degradation in the early burial environment, resulting in incomplete decomposition and the conservation of soft-bodied animals, many of which are otherwise unknown from the fossil record. While Burgess Shale-type fossil assemblages are primarily restricted to early and middle Cambrian strata (Series 2–3), their anomalous preservation is a pervasive phenomenon that occurs widely in mudstone successions deposited on multiple paleocontinents. Herein, circumstances that led to the preservation of Burgess Shale-type fossils in Cambrian strata worldwide are reviewed. A three-tiered rank classification of the more than 50 Burgess Shale-type deposits now known is proposed and is used to consider the hierarchy of controls that regulated the operation of Burgess Shale-type preservation in space and time, ultimately determining the total number of preserved taxa and the fidelity of preservation in each deposit. While Burgess Shale-type preservation is a unique taphonomic mode that ultimately was regulated by the influence of global seawater chemistry upon the early diagenetic environment, physical depositional (biostratinomic) controls are shown to have been critical in determining the total number of taxa preserved in fossil assemblages, and hence, in regulating many of the important differences among Burgess Shale-type deposits.

Type
Research Article
Copyright
Copyright © 2014 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, J. 1971. Control of lower Paleozoic sedimentary facies by the Kicking Horse Rim, southern Rocky Mountains, Canada. Bulletin of Canadian Petroleum Geology, 19:557569.Google Scholar
Aitken, J. D. 1997. Stratigraphy of the Middle Cambrian platformal succession, southern Rocky Mountains. Geological Survey of Canada Bulletin 398, 322 p.Google Scholar
Alessandrello, A., and Bracchi, G. 2003. Eldonia berbera n. sp., a new species of the enigmatic genus Eldonia Walcott, 1911 from the Rawtheyan (Upper Ordovician) of Anti-Atlas (Erfoud, Tafilalt, Morocco). Atti della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano, 144:337358.Google Scholar
Allison, P. A. 1986. Soft-bodied animals in the fossil record: the role of decay in fragmentation during transport. Geology, 14:979981.2.0.CO;2>CrossRefGoogle Scholar
Allison, P. A. 1988. The role of anoxia in the decay and mineralization of protienaceous macro-fossils. Paleobiology, 14:139154.CrossRefGoogle Scholar
Allison, P. A., and Brett, C. E. 1995. In situ benthos and paleo-oxygenation in the middle Cambrian Burgess Shale, British Columbia, Canada. Geology, 23:10791082.2.3.CO;2>CrossRefGoogle Scholar
Allison, P. A., and Briggs, D. E. G. 1993. Exceptional fossil record: distribution of soft-tissue preservation through the Phanerozoic. Geology, 21:527530.2.3.CO;2>CrossRefGoogle Scholar
Allison, P. A., and Briggs, D. E. G. 1994. Exceptional fossil record: distribution of soft-tissue preservation through the Phanerozoic—Reply. Geology, 22:184184.Google Scholar
Aronson, R. B. 1993. Burgess Shale-type biotas were not just burrowed away: Reply. Lethaia, 26:185185.CrossRefGoogle Scholar
Berner, R. A. 1984. Sedimentary pyrite formation: an update. Geochimica et Cosmochimica Acta, 48:605615.CrossRefGoogle Scholar
Berner, R. A. 2006. GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2 . Geochimica et Cosmochimica Acta, 70:56535664.CrossRefGoogle Scholar
Brasier, M. D., and Lindsay, J. F. 2001. Did supercontinental amalgamation trigger the “Cambrian Explosion?” p. 6989. In Zhuravlev, A. and Riding, R. (eds.), The Ecology of the Cambrian Radiation. Columbia University Press, New York.Google Scholar
Brennan, S. T., Lowenstein, T. K., and Horita, J. 2004. Seawater chemistry and the advent of biocalcification. Geology, 32:473476.CrossRefGoogle Scholar
Brett, C. E., Allison, P. A., DeSantis, M. K., Liddell, W. D., and Kramer, A. 2009. Sequence stratigraphy, cyclic facies, and Lagerstätten in the middle Cambrian Wheeler and Marjum Formations, Great Basin, Utah. Palaeogeography, Palaeoclimatology, Palaeoecology, 277:933.CrossRefGoogle Scholar
Briggs, D. E. G. 2003. The role of decay and mineralization in the preservation of soft-bodied fossils. Annual Review of Earth and Planetary Sciences, 31:275301.CrossRefGoogle Scholar
Briggs, D. E. G., Bottrell, S. H., and Raiswell, R. 1991. Pyritization of soft-bodied fossils: Beecher's Trilobite Bed, Upper Ordovician, New York State. Geology, 19:12211224.2.3.CO;2>CrossRefGoogle Scholar
Briggs, D. E. G., Erwin, D. H., Collier, F. J., and Clark, C. 1994. The Fossils of the Burgess Shale. Smithsonian Institution Press, Washington, D. C.Google Scholar
Briggs, D. E. G., and Fortey, R. A. 2005. Wonderful strife: systematics, stem groups, and the phylogenetic signal of the Cambrian radiation. Paleobiology, 31:94112.CrossRefGoogle Scholar
Briggs, D. E. G., Fortey, R. A., and Wills, M. A. 1992. Morphological disparity in the Cambrian. Science, 256:16701673.CrossRefGoogle ScholarPubMed
Briggs, D. E. G., and Kear, A. J. 1994. Decay and mineralization of shrimps. PALAIOS, 9:431456.CrossRefGoogle Scholar
Briggs, D. E. G., Lieberman, B. S., Hendricks, J. R., Halgedahl, S. L., and Jarrard, R. D. 2008. Middle Cambrian arthropods from Utah. Journal of Paleontology, 82:238254.CrossRefGoogle Scholar
Briggs, D. E. G., and Nedin, C. 1997. The taphonomy and affinities of the problematic fossil Myoscolex from the lower Cambrian Emu Bay shale of south Australia. Journal of Paleontology, 71:2232.CrossRefGoogle Scholar
Briggs, D. E. G., Raiswell, R., Bottrell, S. H., Hatfield, D., and Bartels, C. 1996. Controls on the pyritization of exceptionally preserved fossils: An analysis of the Lower Devonian Hunsruck Slate of Germany. American Journal of Science, 296:633663.CrossRefGoogle Scholar
Budd, G. E. 2011. Campanamuta mantonae gen. et. sp. nov., an exceptionally preserved arthropod from the Sirius Passet Fauna (Buen Formation, lower Cambrian, North Greenland). Journal of Systematic Palaeontology, 9:217260.CrossRefGoogle Scholar
Budd, G. E., and Jensen, S. 2000. A critical reappraisal of the fossil record of the bilaterian phyla. Biological Reviews of the Cambridge Philosophical Society, 75:253295.CrossRefGoogle ScholarPubMed
Butterfield, N. J. 1990. Organic preservation of non-mineralizing organisms and the taphonomy of the Burgess Shale. Paleobiology, 16:272286.CrossRefGoogle Scholar
Butterfield, N. J. 1994. Burgess Shale-type fossils from a Lower Cambrian shallow-shelf sequence in northwestern Canada. Nature, 369:477479.CrossRefGoogle Scholar
Butterfield, N. J. 1995. Secular distribution of Burgess Shale-type preservation. Lethaia, 28:113.CrossRefGoogle Scholar
Butterfield, N. J. 2002. Leanchoilia guts and the interpretation of three-dimensional structures in Burgess Shale-type fossils. Paleobiology, 28:155171.2.0.CO;2>CrossRefGoogle Scholar
Butterfield, N. J. 2003. Exceptional fossil preservation and the Cambrian explosion. Integrative and Comparative Biology, 43:166177.CrossRefGoogle ScholarPubMed
Butterfield, N. J. 2009. Fossil preservation in the Burgess Shale, p. 6369. In Caron, J.-B. and Rudkin, D. M. (eds), A Burgess Shale Primer: History, Geology, and Research Highlights. Burgess Shale Consortium, Toronto.Google Scholar
Butterfield, N. J., Balthasar, U., and Wilson, L. A. 2007. Fossil diagenesis in the Burgess Shale. Palaeontology, 50:537543.CrossRefGoogle Scholar
Cai, Y., Schiffbauer, J. D., Hua, H., and Xiao, S. 2012. Preservational modes in the Ediacaran Gaojiashan Lagerstätte: Pyritization, aluminosilicification, and carbonaceous compression. Palaeogeography, Palaeoclimatology, Palaeoecology, 326:109117.CrossRefGoogle Scholar
Canfield, D. E., Raiswell, R., and Bottrell, S. 1992. The reactivity of sedimentary iron minerals toward sulfide. American Journal of Science, 292:659683.CrossRefGoogle Scholar
Caron, J.-B., Gaines, R. R., Aria, C., Mángano, M. G., and Streng, M. 2014. A new phyllopod bed-like assemblage from the Burgess Shale of the Canadian Rockies. Nature Communications 5, article number 3210: doi: 10.1038/ncomms4210 CrossRefGoogle Scholar
Caron, J.-B., Gaines, R. R., Mángano, M. G., Streng, M., and Daley, A. C. 2010. A new Burgess Shale-type assemblage from the “thin” Stephen Formation of the southern Canadian Rockies. Geology, 38:811814.CrossRefGoogle Scholar
Caron, J. B., and Jackson, D. A. 2006. Taphonomy of the Greater Phyllopod Bed community, Burgess Shale. PALAIOS, 21:451465.CrossRefGoogle Scholar
Caron, J. B., and Jackson, D. A. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258:222256.CrossRefGoogle Scholar
Collins, D., Briggs, D., and Morris, S. C., 1983. New Burgess Shale fossil sites reveal middle Cambrian faunal complex. Science, 222:163167.CrossRefGoogle ScholarPubMed
Conway Morris, S. 1986. The community structure of the middle Cambrian Phyllopod Bed (Burgess Shale). Palaeontology, 29:423467.Google Scholar
Conway Morris, S. 1989a. Burgess Shale-type faunas and the Cambrian explosion. Science, 246:339346.CrossRefGoogle Scholar
Conway Morris, S. 1989b. The persistence of Burgess Shale-type faunas: implications for the evolution of deeper-water faunas. Transactions of the Royal Society of Edinburgh: Earth Sciences, 80:271283.CrossRefGoogle Scholar
Curtin, L. G., and Gaines, R. R. 2011. Burgess Shale-type preservation and detrital clay mineralogy: a test of the “reactive clay” hypothesis. Geological Society of America Abstracts with Programs, 43(5): 108.Google Scholar
Dahl, T. W., Hammarlund, E. U., Anbar, A. D., Bond, D. P., Gill, B. C., Gordon, G. W., Knoll, A. H., Nielsen, A. T., Schovsbo, N. H., and Canfield, D. E. 2010. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proceedings of the National Academy of Sciences of the United States of America, 107:1791117915.CrossRefGoogle Scholar
Dornbos, S. Q., Bottjer, D. J., and Chen, J.-y. 2005. Paleoecology of benthic metazoans in the Early Cambrian Maotianshan Shale biota and the Middle Cambrian Burgess Shale biota: evidence for the Cambrian substrate revolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 220:4767.CrossRefGoogle Scholar
Droser, M. L., and Bottjer, D. J. 1988. Trends in depth and extent of bioturbation in Cambrian carbonate marine environments, western United States. Geology, 16:233236.2.3.CO;2>CrossRefGoogle Scholar
Droser, M. L., and Bottjer, D. J. 1989. Ordovician increase in extent and depth of bioturbation: Implications for understanding early Paleozoic ecospace utilization. Geology, 17:850852.2.3.CO;2>CrossRefGoogle Scholar
Elrick, M., and Snider, A. C. 2002. Deep-water stratigraphic cyclicity and carbonate mud mound development in the Middle Cambrian Marjum Formation, House Range, Utah, USA. Sedimentology, 49:10211047.CrossRefGoogle Scholar
English, A. M., and Babcock, L. E. 2010. Census of the Indian Springs Lagerstätte, Poleta Formation (Cambrian), western Nevada, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 295:236244.CrossRefGoogle Scholar
Erwin, D. H., Laflamme, M., Tweedt, S. M., Sperling, E. A., Pisani, D., and Peterson, K. J. 2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science, 334:109110977.CrossRefGoogle ScholarPubMed
Farrell, Ú. C. 2014. Pyritization of soft tissues in the fossil record: an overview, p. 3557. In Laflamme, M., Schiffbauer, J. D., and Darroch, S. A. F. (eds.), Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, CT.Google Scholar
Farrell, Ú. C., Briggs, D. E., Hammarlund, E. U., Sperling, E. A., and Gaines, R. R. 2013. Paleoredox and pyritization of soft-bodied fossils in the Ordovician Frankfort Shale of New York. American Journal of Science, 313:452489.CrossRefGoogle Scholar
Fletcher, T. P., and Collins, D. H. 1998. The Middle Cambrian Burgess Shale and its relationship to the Stephen Formation in the southern Canadian Rocky Mountains. Canadian Journal of Earth Sciences, 35:413436.CrossRefGoogle Scholar
Fletcher, T. P., and Collins, D. H. 2003. The Burgess Shale and associated Cambrian formations west of the Fossil Gully Fault Zone on Mount Stephen, British Columbia. Canadian Journal of Earth Sciences, 40:18231838.CrossRefGoogle Scholar
Forchielli, A., Steiner, M., Hu, S. X., and Keupp, H. 2012. Taphonomy of Cambrian (Stage 3/4) sponges from Yunnan (South China). Bulletin of Geosciences, 87:133142.CrossRefGoogle Scholar
Forchielli, A., Steiner, M., Kasbohm, J., Hu, S., and Keupp, H. 2014. Taphonomic traits of clay-hosted early Cambrian Burgess Shale-type fossil Lagerstätten in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 398:5985.CrossRefGoogle Scholar
Gabbott, S. E., Xian-guang, H., Norry, M. J., and Siveter, D. J. 2004. Preservation of Early Cambrian animals of the Chengjiang biota. Geology, 32:901904.CrossRefGoogle Scholar
Gabbott, S. E., Zalasiewicz, J., and Collins, D. 2008. Sedimentation of the Phyllopod Bed within the Cambrian Burgess Shale Formation of British Columbia. Journal of the Geological Society, 165:307318.CrossRefGoogle Scholar
Gaines, R. 2011. New Burgess Shale-type locality in the “thin” Stephen Formation, Kootenay National Park, British Columbia: stratigraphic and paleoenvironmental setting. Paleontographica Canadiana, 31:7288.Google Scholar
Gaines, R. R., Briggs, D. E., Orr, P. J., and Van Roy, P. 2012a. Preservation of giant anomalocaridids in silica-chlorite concretions from the Early Ordovician of Morocco. PALAIOS, 27:317325.CrossRefGoogle Scholar
Gaines, R. R., Briggs, D. E., and Yuanlong, Z. 2008. Cambrian Burgess Shale-type deposits share a common mode of fossilization. Geology, 36:755758.CrossRefGoogle Scholar
Gaines, R. R., and Droser, M. L. 2002. Depositional environments, ichnology, and rare soft-bodied preservation in the Lower Cambrian Latham Shale, East Mojave, p. 153164. In Corsetti, F. A. (ed.), Proterozoic–Cambrian of the Great Basin and Beyond. SEPM, Tulsa.Google Scholar
Gaines, R. R., and Droser, M. L. 2003. Paleoecology of the familiar trilobite Elrathia kingii: An early exaerobic zone inhabitant. Geology, 31:941944.CrossRefGoogle Scholar
Gaines, R., and Droser, M. L. 2005. New approaches to understanding the mechanics of Burgess Shale-type deposits: from the micron scale to the global picture. The Sedimentary Record, 3:48.CrossRefGoogle Scholar
Gaines, R. R., and Droser, M. L. 2010. The paleoredox setting of Burgess Shale-type deposits. Palaeogeography, Palaeoclimatology, Palaeoecology, 297:649661.CrossRefGoogle Scholar
Gaines, R. R., Droser, M. L., Orr, P. J., Garson, D., Hammarlund, E., Qi, C., and Canfield, D. E. 2012b. Burgess shale-type biotas were not entirely burrowed away. Geology, 40:283286.CrossRefGoogle Scholar
Gaines, R. R., Hammarlund, E. U., Hou, X., Qi, C., Gabbott, S. E., Zhao, Y., Peng, J., and Canfield, D. E. 2012c. Mechanism for Burgess Shale-type preservation. Proceedings of the National Academy of Sciences of the United States of America, 109:51805184.CrossRefGoogle ScholarPubMed
Gaines, R. R., Hammarlund, E. U., Hou, X., Qi, C., Gabbott, S. E., Zhao, Y., Peng, J., and Canfield, D. E. 2012d. Reply to Butterfield: Low-sulfate and early cements inhibit decay and promote Burgess Shale-type preservation. Proceedings of the National Academy of Sciences of the United States of America, 109:E1902E1902.Google Scholar
Gaines, R. R., Kennedy, M. J., and Droser, M. L. 2005. A new hypothesis for organic preservation of Burgess Shale taxa in the middle Cambrian Wheeler Formation, House Range, Utah. Palaeogeography, Palaeoclimatology, Palaeoecology, 220:193205.CrossRefGoogle Scholar
Gaines, R. R., Mering, J. A., Zhao, Y. L., and Peng, J. 2011. Stratigraphic and microfacies analysis of the Kaili Formation, a candidate GSSP for the Cambrian Series 2–Series 3 boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 311:171183.CrossRefGoogle Scholar
Gaines, R. R., Peters, S., Hammarlund, E., Briggs, D. E., Qi, C., Hou, X., Gabbott, S. E., and Canfield, D. E. 2013. The early Phanerozoic “taphonomic window.” Geological Society of America Abstracts with Programs, 45(7):306.Google Scholar
García-Bellido, D. C., and Aceñolaza, G. F. 2011. The worm Palaeoscolex from the Cambrian of NW Argentina: extending the biogeography of Cambrian priapulids to South America. Alcheringa: An Australasian Journal of Palaeontology, 35:531538.CrossRefGoogle Scholar
García-Bellido, D. C., and Collins, D. H. 2006. A new study of Marrella splendens (Arthropoda, Marrellomorpha) from the Middle Cambrian Burgess Shale, British Columbia, Canada. Canadian Journal of Earth Sciences, 43:721742.CrossRefGoogle Scholar
Garson, D. E., Gaines, R. R., Droser, M. L., Liddell, W. D., and Sappenfield, A. 2012. Dynamic palaeoredox and exceptional preservation in the Cambrian Spence Shale of Utah. Lethaia, 45:164177.CrossRefGoogle Scholar
Gill, B. C., Lyons, T. W., Young, S. A., Kump, L. R., Knoll, A. H., and Saltzman, M. R. 2011. Geochemical evidence for widespread euxinia in the Later Cambrian ocean. Nature, 469:8083.CrossRefGoogle ScholarPubMed
Gostlin, K. 2006. Sedimentology and Palynology of the Middle Cambrian Burgess Shale. PhD Thesis, University of Toronto, Toronto, Canada, 490 p.Google Scholar
Hagadorn, J. W. 2002. Burgess Shale-type localities: the global picture, p. 91116. In Bottjer, D., Etter, W., Hagadorn, J. W., and Tang, C. M. (eds.), Exceptional Fossil Preservation. Columbia University Press, New York.Google Scholar
Hagadorn, J. W., Dott, R. H., and Damrow, D. 2002. Stranded on a Late Cambrian shoreline: medusae from central Wisconsin. Geology, 30:147150.2.0.CO;2>CrossRefGoogle Scholar
Halgedahl, S. L., Jarrard, R. D., Brett, C. E., and Allison, P. A. 2009. Geophysical and geological signatures of relative sea level change in the upper Wheeler Formation, Drum Mountains, West-Central Utah: A perspective into exceptional preservation of fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 277:3456.CrossRefGoogle Scholar
Hammarlund, E. 2007. The Ocean Chemistry at Cambrian Deposits with Exceptional Preservation & the Influence of Sulfate on Soft-tissue Decay. Master's Thesis, University of Southern Denmark, Odense, Denmark, 64 p.Google Scholar
Handle, K. C., and Powell, W. G. 2012. Morphologically simple enigmatic fossils from the Wheeler Formation: a comparison with definitive algal fossils. PALAIOS, 27:304316.CrossRefGoogle Scholar
Henrichs, S. M., and Reeburgh, W. S. 1987. Anaerobic mineralization of marine sediment organic matter: Rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiology Journal, 5:191237.CrossRefGoogle Scholar
Hou, X.-G., Aldridge, R., Bergstrom, J., Siveter, D. J., Siveter, D., and Feng, X.-H. 2008. The Cambrian Fossils of Chengjiang, China: the Flowering of Early Animal Life. Blackwell Science Ltd., Maiden, MA.Google Scholar
Hu, S. 2005. Taphonomy and palaeoecology of the Early Cambrian Chengjiang biota from eastern Yunnan, China. Berliner Palaobiologische Abhandlungen, 7:182185.Google Scholar
Hu, S. X., Zhu, M. Y., Steiner, M., Luo, H. L., Zhao, F. C., and Liu, Q. 2010. Biodiversity and taphonomy of the Early Cambrian Guanshan biota, eastern Yunnan. Science China-Earth Sciences, 53:17651773.CrossRefGoogle Scholar
Jørgensen, B. B. 1982. Mineralization of organic matter in the sea bed: the role of sulphate reduction. Nature, 296:643645.CrossRefGoogle Scholar
Kimmig, J., and Pratt, B. 2013. Taphonomy of a new middle Cambrian (Series 3) fossil Lagerstätte from the Mackenzie Mountains, Northwestern Canada. Geological Society of America Abstracts with Programs, 45(7):307 Google Scholar
Lee, C. 1992. Controls on organic carbon preservation: The use of stratified water bodies to compare intrinsic rates of decomposition in oxic and anoxic systems. Geochimica et Cosmochimica Acta, 56:33233335.CrossRefGoogle Scholar
Lee, M. S. Y., Jago, J. B., García-Bellido, D. C., Edgecombe, G. D., Gehling, J. G., and Paterson, J. R. 2011. Modern optics in exceptionally preserved eyes of Early Cambrian arthropods from Australia. Nature, 474:631634.CrossRefGoogle ScholarPubMed
Lerosey-Aubril, R., Gaines, R., Hegna, T., Ortega-Hernandez, J., Babcock, L. E., Lefebvre, B., Kier, C., Bonino, E., Sahratian, Q., and Vannier, J. 2013. The Weeks Formation Lagerstätte (House Range, Utah): a unique insight into the evolution of soft-bodied metazoans during the late Cambrian. Geological Society of America Abstracts with Programs, 45(7):454.Google Scholar
Lerosey-Aubril, R., Hegna, T. A., Kier, C., Bonino, E., Habersetzer, J., and Carre, M. 2012. Controls on gut phosphatisation: the trilobites from the Weeks Formation Lagerstätte (Cambrian; Utah). PLoS ONE, 7(3):e32934.CrossRefGoogle ScholarPubMed
Liddell, W. D., Wright, S., and Brett, C. E. 1997. Sequence stratigraphy and paleoecology of the Middle Cambrian Spence Shale in northern Utah and southern Idaho. Brigham Young Geological Studies, 42:5978.Google Scholar
Lieberman, B. S. 2003. A new soft-bodied fauna: the Pioche Formation of Nevada. Journal of Paleontology, 77:674690.2.0.CO;2>CrossRefGoogle Scholar
Lin, J.-P., Zhao, Y.-L., Rahman, I. A., Xiao, S., and Wang, Y. 2010. Bioturbation in Burgess Shale-type Lagerstätten—case study of trace fossil-body fossil association from the Kaili Biota (Cambrian Series 3), Guizhou, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 292:245256.CrossRefGoogle Scholar
Liu, H. P., McKay, R. M., Young, J. N., Witzke, B. J., McVey, K. J., and Liu, X. 2006. A new Lagerstätte from the Middle Ordovician St. Peter Formation in northeast Iowa, USA. Geology, 34:969.Google Scholar
Ma, X., Cong, P., Hou, X., Edgecombe, G. D., and Strausfeld, N. J. 2014. An exceptionally preserved arthropod cardiovascular system from the early Cambrian. Nature Communications 5, article 3560: doi:10.1038/ncomms4560 CrossRefGoogle Scholar
Ma, X., Hou, X., Edgecombe, G. D., and Strausfeld, N. J. 2012. Complex brain and optic lobes in an early Cambrian arthropod. Nature, 490:258–61.CrossRefGoogle Scholar
Mángano, M. 2011. Trace-fossil assemblages in a Burgess Shale-type deposit from the Stephen Formation at Stanley Glacier, Canadian Rocky Mountains: unraveling ecologic and evolutionary controls, p. 89109. In Johnston, P. A. and Johnston, K. J. (eds.), Proceedings of the International Conference on the Cambrian Explosion. Palaeontographica Canadiana, 31.Google Scholar
Marshall, C. R. 2006. Explaining the Cambrian “explosion” of animals. Annual Review of Earth and Planetary Sciences, 34:355384.CrossRefGoogle Scholar
McCoy, V. 2014. Concretions as agents of soft-tissue preservation: a review, p. 147161. In Laflamme, M., Schiffbauer, J. D., and Darroch, S. A. F. (eds.), Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, CT.Google Scholar
Minter, N. J., Mángano, M. G., and Caron, J. B. 2012. Skimming the surface with Burgess Shale arthropod locomotion. Proceedings of the Royal Society of London B-Biological Sciences, 279:16131620.CrossRefGoogle ScholarPubMed
Orr, P. J., Benton, M. J., and Briggs, D. E. G. 2003. Post-Cambrian closure of the deep-water slope-basin taphonomic window. Geology, 31:769772.CrossRefGoogle Scholar
Orr, P. J., Briggs, D. E. G., and Kearns, S. L. 1998. Cambrian Burgess Shale animals replicated in clay minerals. Science, 281:11731175.CrossRefGoogle ScholarPubMed
Page, A., Gabbott, S. E., Wilby, P. R., and Zalasiewicz, J. A. 2008. Ubiquitous Burgess Shale-style “clay templates” in low-grade metamorphic mudrocks. Geology, 36:855858.CrossRefGoogle Scholar
Paterson, J. R., García-Bellido, D. C., Lee, M. S. Y., Brock, G. A., Jago, J. B., and Edgecombe, G. D. 2011. Acute vision in the giant Cambrian predator Anomalocaris and the origin of compound eyes. Nature, 480:237240.CrossRefGoogle ScholarPubMed
Peng, J., Zhao, Y., Wu, Y., Yuan, J., and Tai, T. 2005. The Balang Fauna—a new early Cambrian Fauna from Kaili City, Guizhou Province. Chinese Science Bulletin, 50:11591162.CrossRefGoogle Scholar
Peters, S. E. 2009. The problem with the Paleozoic. Paleobiology, 33:165181.CrossRefGoogle Scholar
Peters, S. E., and Gaines, R. R. 2012. Formation of the ‘Great Unconformity’ as a trigger for the Cambrian explosion. Nature, 484:363366.CrossRefGoogle ScholarPubMed
Petrovich, R. 2001. Mechanisms of fossilization of the soft-bodied and lightly armored faunas of the Burgess Shale and of some other classical localities. American Journal of Science, 301:683726.CrossRefGoogle Scholar
Piper, D. J. W. 1972. Sediments of the Middle Cambrian Burgess Shale, Canada. Lethaia, 5:169175.CrossRefGoogle Scholar
Poulton, S., and Canfield, D. 2005. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chemical Geology, 214:209221.CrossRefGoogle Scholar
Powell, W. 2003. Greenschist-facies metamorphism of the Burgess Shale and its implications for models of fossil formation and preservation. Canadian Journal of Earth Sciences, 40:1325.CrossRefGoogle Scholar
Powell, W. G., Johnston, P. A., and Collom, C. J. 2003. Geochemical evidence for oxygenated bottom waters during deposition of fossiliferous strata of the Burgess Shale Formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 201:249268.CrossRefGoogle Scholar
Raiswell, R., and Berner, R. A. 1986. Pyrite and organic matter in Phanerozoic normal marine shales. Geochimica et Cosmochimica Acta 50:19671976.CrossRefGoogle Scholar
Raiswell, R., Newton, R., Bottrell, S. H., Coburn, P. M., Briggs, D. E. G., Bond, D. P. G., and Poulton, S. W. 2008. Turbidite depositional influences on the diagenesis of Beecher's Trilobite Bed and the Hunsruck Slate; sites of soft tissue pyritization. American Journal of Science, 308:105129.CrossRefGoogle Scholar
Rees, M. 1986. A fault-controlled trough through a carbonate platform: The Middle Cambrian House Range embayment. Geological Society of America Bulletin, 97:10541069.2.0.CO;2>CrossRefGoogle Scholar
Robison, R. 1991. Middle Cambrian biotic diversity: examples from four Utah Lagerstätten, p. 7798. In Simonetta, A. M. and Conway Morris, S. (eds.), The Early Evolution of Metazoa and the Significance of Problematic Taxa. Cambridge University Press, Cambridge.Google Scholar
Robison, R. A. 1960. Lower and Middle Cambrian stratigraphy of the eastern Great Basin, p. 4352. In Boettcher, J. W. and Sloan, W. W. (eds.), Guidebook to the Geology of East Central Nevada, Eleventh Annual Field Conference of the Intermountain Association of Petroleum Geologists, Salt Lake City, Utah. Google Scholar
Sansom, R. S., Gabbott, S. E., and Purnell, M. A. 2010. Non-random decay of chordate characters causes bias in fossil interpretation. Nature, 463:797800.CrossRefGoogle ScholarPubMed
Savrda, C. E., and Bottjer, D. J. 1986. Trace-fossil model for reconstruction of paleo-oxygenation in bottom waters. Geology, 14:36.2.0.CO;2>CrossRefGoogle Scholar
Savrda, C. E., Bottjer, D. J., and Gorsline, D. S. 1984. Development of a comprehensive oxygen-deficient marine biofacies model: evidence from Santa Monica, San Pedro, and Santa Barbara Basins, California Continental Borderland. AAPG Bulletin, 68:11791192.Google Scholar
Schiffbauer, J. D., Wallace, A. F., Broce, J., and Xiao, S. 2014. Exceptional fossil conservation through phosphatization, p. 5982. In Laflamme, M., Schiffbauer, J. D., and Darroch, S. A. F. (eds.), Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, CT.Google Scholar
Schwimmer, D. R., and Montante, W. M. 2007. Exceptional fossil preservation in the Conasauga Formation, Cambrian, northwestern Georgia, USA. PALAIOS, 22:360372.CrossRefGoogle Scholar
Skinner, E. S. 2005. Taphonomy and depositional circumstances of exceptionally preserved fossils from the Kinzers Formation (Cambrian), southeastern Pennsylvania. Palaeogeography, Palaeoclimatology, Palaeoecology, 220:167192.CrossRefGoogle Scholar
Steiner, M., Zhu, M. Y., Zhao, Y. L., and Erdtmann, B. D. 2005. Lower Cambrian Burgess Shale-type fossil associations of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 220:129152.CrossRefGoogle Scholar
Sun, H. J., Zhao, Y. L., Peng, J., and Yang, Y. N. 2013. New Wiwaxia material from the Tsinghsutung Formation (Cambrian Series 2) of Eastern Guizhou, China. Geological Magazine, 151:339348.CrossRefGoogle Scholar
Tarhan, L. G., and Droser, M. L. 2014. Widespread delayed mixing in early to middle Cambrian marine shelfal settings. Palaeogeography, Palaeoclimatology, Palaeoecology 399:310322.CrossRefGoogle Scholar
Tribovillard, N., Algeo, T. J., Lyons, T., and Riboulleau, A. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232:1232.CrossRefGoogle Scholar
Vaccari, N., Edgecombe, G., and Escudero, C. 2004. Cambrian origins and affinities of an enigmatic fossil group of arthropods. Nature, 430:554557.CrossRefGoogle ScholarPubMed
Van Roy, P., and Briggs, D. E. G. 2011. A giant Ordovician anomalocaridid. Nature, 473:510513.CrossRefGoogle ScholarPubMed
Van Roy, P., Orr, P. J., Botting, J. P., Muir, L. A., Vinther, J., Lefebvre, B., El Hariri, K., and Briggs, D. E. G. 2010. Ordovician faunas of Burgess Shale type. Nature, 465:215218.CrossRefGoogle ScholarPubMed
von Bitter, P. H., Purnell, M. A., Tetreault, D. K., and Stott, C. A. 2007. Eramosa Lagerstätte—Exceptionally preserved soft-bodied biotas with shallow-marine shelly and bioturbating organisms (Silurian, Ontario, Canada). Geology, 35:879882.CrossRefGoogle Scholar
Walossek, D., and Müller, K. 1998. Cambrian ‘Orsten’-type arthropods and the phylogeny of Crustacea, p. 139153. In Forety, R. A. and Thomas, R. H. (eds.), Arthropod Relationships. The Systematic Association Special Volume Series 55, Chapman and Hall, London.CrossRefGoogle Scholar
Wang, W., Guan, C., Zhou, C., Wan, B., Tang, Q., Chen, X., Chen, Z., and Yuan, X. 2014. Exceptional preservation of macrofossils from the Ediacaran Lantian and Miahoe biotas, South China. PALAIOS, 29:129136.CrossRefGoogle Scholar
Wang, Y., Zhao, Y., Lin, J., and Wang, P. 2004. Relationship between trace fossil Gordia and medusiform fossils Pararotadiscus from the Kaili Biota, Taijiang, Guizhou, and its significance. Geological Review, 50:113119.Google Scholar
Webster, M., Gaines, R. R., and Hughes, N. C. 2008. Microstratigraphy, trilobite biostratinomy, and depositional environment of the “Lower Cambrian” Ruin Wash Lagerstätte, Pioche Formation, Nevada. Palaeogeography, Palaeoclimatology, Palaeoecology, 264:100122.CrossRefGoogle Scholar
Whittington, H. B. 1971. Redescription of Marrella splendens (Trilobitoidea) from the Burgess Shale, Middle Cambrian, British Columbia. Bulletin Commission Geologique du Canada 209, Department of Energy, Mines and Resources, Ottowa.CrossRefGoogle Scholar
Wills, M. A., Briggs, D. E. G., and Fortey, R. A. 1994. Disparity as an evolutionary index: a comparison of Cambrian and recent arthropods. Paleobiology, 20:93130.CrossRefGoogle Scholar
Wilson, L. A. 2006. Food for Thought: A Morphological and Taphonomic Study of Fossilised Digestive Systems from Early to Middle Cambrian Taxa. PhD Thesis, University of Cambridge, Cambridge, 275 p.Google Scholar
Xiao, S., Droser, M., Gehling, J. G., Hughes, I. V., Wan, B., Chen, Z., and Yuan, X. 2013. Affirming life aquatic for the Ediacara biota in China and Australia. Geology, 41:10951098.CrossRefGoogle Scholar
Zhang, X. G., Bergstrom, J., Bromley, R. G., and Hou, X. G. 2007a. Diminutive trace fossils in the Chengjiang Lagerstätte. Terra Nova, 19:407412.CrossRefGoogle Scholar
Zhang, X. G., and Hou, X. G. 2007. Gravitational constraints on the burial of Chengjiang fossils. PALAIOS, 22:448453.CrossRefGoogle Scholar
Zhang, X.-G., Hou, X.-G., and Bergstrom, J. A. N. 2006. Early Cambrian priapulid worms buried with their lined burrows. Geological Magazine, 143:743748.CrossRefGoogle Scholar
Zhang, X. G., Siveter, D. J., Waloszek, D., and Maas, A. 2007b. An epipodite-bearing crown-group crustacean from the Lower Cambrian. Nature, 449:595598.CrossRefGoogle ScholarPubMed
Zhao, F., Caron, J. B., Hu, S., and Zhu, M. 2009. Quantitative analysis of taphofacies and paleocommunities in the Early Cambrian Chengjiang Lagerstätte. PALAIOS, 24:826839.CrossRefGoogle Scholar
Zhao, F. C., Hu, S. X., Caron, J. B., Zhu, M. Y., Yin, Z. J., and Lu, M. 2012. Spatial variation in the diversity and composition of the Lower Cambrian (Series 2, Stage 3) Chengjiang Biota, Southwest China. Palaeogeography, Palaeoclimatology, Palaeoecology, 346:5465.CrossRefGoogle Scholar
Zhao, Y. L., Zhu, M. Y., Babcock, L. E., Yuan, J. L., Parsley, R. L., Peng, J., Yang, X. L., and Wang, Y. 2005. Kaili Biota: a taphonomic window on diversification of metazoans from the basal Middle Cambrian: Guizhou, China. Acta Geologica Sinica-English Edition, 79:751765.Google Scholar
Zhu, M., Gehling, J. G., Xiao, S., Zhao, Y., and Droser, M. L. 2008. Eight-armed Ediacara fossil preserved in contrasting taphonomic windows from China and Australia. Geology, 36:867870.CrossRefGoogle Scholar
Zhu, M.-Y., Zhang, J. M., and Li, G. X. 2001. Sedimentary environments of the Early Cambrian Chengjiang biota: Sedimentology of the Yu'anshan Foumation in Chengjiang County, eastern Yunnan. Acta Paleontologica Sinica, 40:80105.Google Scholar