Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-04T13:07:41.481Z Has data issue: false hasContentIssue false

Catecholamine-, Indoleamine-, and GABA-containing cells in the chameleon retina

Published online by Cambridge University Press:  02 June 2009

Mohamed Bennis
Affiliation:
Laboratoire de Neurosciences, Faculté des Sciences Semlalia, Université Cadi Ayyad, Marrakech, Morocco
Claudine Versaux-Botteri
Affiliation:
Laboratoire d'Anatomie Comparée, Jeune équipe DRED, No. 336, M.N.H.N. 55, rue Buffon 75005, Paris, France Laboratoire de Neurocytologie Oculaire, INSERM U 86, 15, rue de l'Ecole de Médecine 75006, Paris, France

Abstract

Neurons containing catecholamine, indoleamine, and gamma-aminobutyric acid (GABA) were identified by immunohistochemistry in the chameleon retina. Tyrosine hydroxylase (TH) and serotonin (5HT) were observed mostly in two subtypes of orthotopic amacrine cells differing in their soma size and process distribution within the IPL. Some labelled cells were displaced either to the IPL (5HT) or to the GCL (TH and 5HT). A multiplicity of retinal cell types contained GABA including cones, horizontal, amacrine, and ganglion cells. Our results confirmed those obtained in the retinas of other lizards except for the presence of interstitial and displaced amacrine cells containing TH or 5HT of which this is the first report.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agardh, E., Bruun, A., Ehinoer, B. & Storm-Mathisen, J. (1986). GABA immunoreactivity in the retina. Investigative Ophthalmology and Visual Science 27, 674678.Google ScholarPubMed
Armengol, J.A., Prada, F., Ambrosiani, J. & Genis-Galvez, J. (1988). Photoreceptors of the chameleon retina (Chameleo chameleo). A Golgi study. Journal für Hirnsforschung 4, 403409.Google Scholar
Boatright, J.H. & Iuvone, P.M. (1989). GABA and the regulation of serotonin N-acetyltransferase activity in the amphibian. II —Role of dopamine. Neurochemistry International 15, 549554.CrossRefGoogle ScholarPubMed
Dacey, D.M. (1989). Axon-bearing amacrine cells of the macaque monkey retina. Journal of Comparative Neurology 284, 275293.CrossRefGoogle ScholarPubMed
Dkkissi, O., Dalil-Thiney, N., Versaux-Botteri, C., Chanut, E., Reperant, J. & Nguyen-Legros, J. (1993). Dopaminergic inter-plexiform cells in the retina of pigmented and hypopigmented quails (Coturnix coturnix japonica). Ophthalmic Research 25, 280288.CrossRefGoogle Scholar
Dowling, J.E. & Ehinger, B. (1978). The interplexiform cell system. I —Synapses of the dopaminergic neurons of the Goldfish retina. Proceedings of Royal Society (London) 201, 726.Google Scholar
Dowling, J.E. (1991). Retinal neuromodulation. The role of dopamine. Visual Neuroscience 7, 8798.CrossRefGoogle ScholarPubMed
Dubocovich, M.L. (1983). Melatonin is a potent modulator of dopamine release in the retina. Nature 306, 782784.CrossRefGoogle ScholarPubMed
Ehinger, B. (1982). Neurotransmitter systems in the retina. Retina 2, 305321.CrossRefGoogle ScholarPubMed
Ehinger, B. (1983). Functional role of dopamine in retina. In Progress in Retinal Research, Vol. 2, ed. Osborne, N.N. & Chader, G.J., pp. 213232. Oxford: Pergamon Press.Google Scholar
Engbretson, G.A. & Battelle, B.A. (1987). Serotonin and dopamine in the retina of a lizard. Journal of Comparative Neurology 257, 140147.CrossRefGoogle ScholarPubMed
Engbretson, G.A., Anderson, K.J. & Wu, J.Y. (1988). GABA as a potential transmitter in lizacd.pnotoreceptors: Immunocytochemical and biochemical evidence. Journal of Comparative Neurology 278, 461471.CrossRefGoogle ScholarPubMed
Famiglietti, E.V. Jr., Kaneko, A. & Tachibana, M. (1977). Neuronal architecture of on and off pathways to ganglion cells in carp retina. Science 198, 12671279.CrossRefGoogle Scholar
Famiglietti, E.V. (1992 a). Polyaxonal amacrine cells of Rabbit retina: Morphology and stratification of PAI cells. Journal of Comparative Neurology 316, 391405.CrossRefGoogle Scholar
Famiglietti, E.V. (1992 b). Polyaxonal amacrine cells of Rabbit retina: Size and distribution of PAI cells. Journal of Comparative Neurology 316, 406421.CrossRefGoogle Scholar
Famiglietti, E.V. (1992 c). Polyaxonal amacrine cells of rabbit retina: PA2, PA3 and PA4 cells. Light and electron microscopic studies with functional interpretation. Journal of Comparative Neurology 316, 422446.CrossRefGoogle ScholarPubMed
Floren, J. & Hansson, H.C. (1980). Investigations into whether 5 hydroxytryptamine is a neurotransmitter in the retina of rabbit and chicken. Investigative Ophthalmology and Visual Science 19, 117125.Google ScholarPubMed
Hurd, L.B. & Eldred, W.D. (1989). Localization of GABA and GAD-like immunoreactivity in the turtle retina. Visual Neuroscience 3, 920.CrossRefGoogle ScholarPubMed
Kaneko, A. & Shmazaki, H. (1976). Synaptic transmission from photo-receptors to bipolar and horizontal cells in the carp retina. Cold Spring Harbour Symposium Biology 40, 537546.CrossRefGoogle Scholar
Kaneko, A., Ohtsuka, T. & Tachibana, M. (1985). GABA sensitivity in solitary turtle cones: Evidence for the feedback pathway from horizontal cells to cones. In Neurocircuitry of the Retina. A Cajal Memorial, ed. Gallego, A. & Gouras, P., pp. 8998. New York: Elsevier.Google Scholar
Kaneko, A. & Tachibana, M. (1986). Effect of gamma-aminobutyric acid on isolated cone photoreceptors on the turtle retina. Journal of Physiology 373, 443461.CrossRefGoogle ScholarPubMed
Kazula, A., Nowak, J.Z. & Iuvone, P.M. (1993). Regulation of melatonin and dopamine biosynthesis in chick retina. The role of GABA. Visual Neuroscience 10, 621629.CrossRefGoogle ScholarPubMed
Kolb, H., Cline, C., Wang, H.H. & Brecha, N. (1987). Distribution and morphology of dopaminergic amacrine cells in the retina of the turtle (Pseudemys scripta elegans). Journal of Neurocytology 16, 577588.CrossRefGoogle ScholarPubMed
Liu, Q. & Debski, E.A. (1993). Serotonin-like immunoreactivity in the adult and developing retina of the Leopard frog Rana pipiens. Journal of Comparative Neurology 338, 391404.CrossRefGoogle ScholarPubMed
Mariani, A.P., Kolb, H. & Nelson, R. (1984). Dopamine-containing amacrine cells of rhesus monkey retina parallel rods in spatial distribution. Brain Research 322, 17.CrossRefGoogle ScholarPubMed
Mariani, A.D. & Hokoc, A.J. (1988). Two types of tyrosine hydroxylase-immunoreactive amacrine cell in the rhesus monkey. Journal of Comparative Neurology 276, 8191.CrossRefGoogle ScholarPubMed
Mashburn, P.B. & Iuvone, P.M. (1981). The role of GABA in the regulation of the dopamine/tyrosine hydroxylase containing neurons of the rat retina. Brain Research 214, 335347.CrossRefGoogle Scholar
Massey, S.C., Mills, S.L. & Marc, R.E. (1992). All indoleamine-accumulating cells in the rabbit retina contain GABA. Journal of Comparative Neurology 322, 275291.CrossRefGoogle ScholarPubMed
McDevitt, D.S., Brahma, S.K., Jeanny, J.C. & Hicks, D. (1993). Presence and foveal enrichment of rod opsin in the “all cone” retina of the american Chameleon. Anatomical Record 237, 399407.CrossRefGoogle ScholarPubMed
Mikkelsen, J.D. (1988). The presence of serotonin-immunoreactive nerve fibers in the optic nerve of mouse. Neuroscience Letters 94, 253258.CrossRefGoogle ScholarPubMed
Morgan, W.W. & Kamp, C.W. (1980). A GABAergic influence on light induced increase in dopamine turn over in the dark adapted rat retina in vivo. Journal of Neurochemistry 30, 10821086.CrossRefGoogle Scholar
Nguyen-Legros, J., Versaux-Botteri, C., Vigny, A. & Raoux, N. (1985). Tyrosine hydroxylase immunohistochemistry fails to demonstrate dopaminergic interplexiform cells in the turtle. Brain Research 339, 323328.CrossRefGoogle ScholarPubMed
Nguyen-Legros, J. (1988). Morphology and distribution of catechol-amine neurons in mammalian retina. In Progress in Retinal Research, Vol. 3, ed. Osborne, N.N. & Chader, G.J., pp. 61103. Oxford: Pergamon Press.Google Scholar
Nguyen-Leoros, J. (1991). Les cellules interplexiformes de la rétine des Mammifères. Annales de Sciences Naturelles, Zoologie 12, 7188.Google Scholar
Nguyen-Legros, J., Durand, J. & Simon, A. (1992). Catecholamine cell types in the human retina. Clinical Visual Science 1, 435447.Google Scholar
Nguyen-Legros, J., Krieger, M. & Simon, A. (1994). Immunohisto-chemical localization of L-DOPA and aromatic L-amino acid decarboxylase in the rat retina. Investigative Ophthalmology and Visual Science 35, 29062915.Google Scholar
Nishmura, Y., Schwartz, M.L. & Rakic, P. (1986). GABA and GAD immunoreactivity of photoreceptor terminals in primate retina. Nature 320, 753756.CrossRefGoogle Scholar
Osborne, N.N., Nesselhut, T., Nicholas, D.A., Patel, S. & Cuello, A.C. (1982). Serotonin-containing neurons in vertebrate retinas. Journal of Neurochemistry 39, 15191528.CrossRefGoogle ScholarPubMed
Osborne, N.N. (1984). Indoleamines in the eye with special reference to serotoninergic neurones in the retina. In Progress in Retinal Research, Vol. 3, ed. Osborne, N.N. & Chader, G.J., pp. 61103. Oxford: Pergamon Press.Google Scholar
Pessac, B., Towle, A.C., Geffard, M. & Wu, J.Y. (1987). Presence of glutamic acid decarboxylase and gamma-aminobutyric acid immunoreactivity in photoreceptors of hatching quail retina. Developmental Brain Research 1, 156159.CrossRefGoogle Scholar
Pourcho, R.G. & Goebel, D.J. (1983). Neuronal subpopulation in cat retina which accumulates the GABA agonist 3H-muscimol: A combined Golgi and autoradiographic study. Journal of Comparative Neurology 219, 2535.CrossRefGoogle ScholarPubMed
Ramon Y Cajal, S. (1933). La rétine des Vertébrés (reprinted in 1972 as The Structure of the Retina), Springfield-Thomas.Google Scholar
Rochon-Duvigneaud, A. (1933). Le Cameleon et son oeil. Annales d'occulistique 177218.Google Scholar
Sherry, D.M. & Ulshafer, R.J. (1992). Neurotransmitter specifie identification and characterization of neurons in the all-cone retina of Anolis carolinensis. I —Gamma-aminobutyric acid. Visual Neuroscience 8, 515529.CrossRefGoogle Scholar
Versaux-Botteri, C., Martin-Martinelli, E., Nguyen-Legros, J., Geffard, M., Vigny, A. & Denoroy, L. (1986). Regional specialization of the rat retina: Catecholamine-containing amacrine cell characterization and distribution. Journal of Comparative Neurology 243, 422433.CrossRefGoogle ScholarPubMed
Versaux-Botteri, C., Simon, A., Vigny, A. & Nguyen-Legros, J. (1987). Existence d'une immunoréactivité au GABA dans les cellules amacrines de la rétine du rat. Comptes-Rendus de l'Academie des Sciences (Paris) 305, 381386.Google Scholar
Versaux-Botteri, C., Dalil, N., Kenigfest, N., Reperant, J., Vesselkin, N. & Nguyen-Legros, J., (1991). Immunohistochemical localization of retinal serotonin cells in the lamprey (Lampetra fluviatilis). Visual Neuroscience 7, 171177.CrossRefGoogle ScholarPubMed
Versaux-Botteri, C., Hergueta, S., Pieau, C., Wasowicz, M., Dalil-Thiney, N. & Nguyen-Legros, J. (1994). Early development of GABA-like immunoreactive cells in the retina of turtle embryos. Developmental Brain Research 83, 125131.CrossRefGoogle ScholarPubMed
Wassle, H. & Chun, M.H. (1988). Dopaminergic and indoleamine-accumulating amacrine cells express GABA-like immunoreactivity in the cat retina. Journal of Neuroscience 8, 33833394.CrossRefGoogle ScholarPubMed
Wiechmann, A.F., Bok, D. & Horwitz, J. (1985). Localization of hydroxyindole O methyltransferase in the mammalian pineal and retina. Investigative Ophthalmology and Visual Science 26, 253265.Google ScholarPubMed
Wiechmann, A.F., Bok, D. & Horwitz, J. (1986). Melatonin binding in the frog retina: Autoradiographic and biochemical analysis. Investigative Ophthalmology and Visual Science 27, 153163.Google ScholarPubMed
Wiechmann, A.F. & Hollyfield, J.G. (1987). Localization of hydroxyindole O'methyltransferase-like immunoreactivity in photoreceptors and cone bipolar cells in the human retina: A light and electron microscope study. Journal of Comparative Neurology 258, 253266.CrossRefGoogle ScholarPubMed
Wiechmann, A.F. & Wirsig-Wiechmann, C.R. (1994). Melatonin receptor distribution in the brain and retina of a lizard Anolis carolinensis. Brain, Behavior, and Evolution 43, 2633.Google ScholarPubMed
Witkovsky, P., Eldred, W. & Karten, H.J. (1984). Catecholamine and indoleamine containing neurons in the turtle. Journal of Comparative Neurology 228, 217225.CrossRefGoogle ScholarPubMed
Witkovsky, P. & Schutte, M. (1991). The organization of dopaminergic neurons in vertebrate retinas. Visual Neuroscience 7, 113124.CrossRefGoogle ScholarPubMed
Wulle, I. & Wagner, H.J. (1990). GABA and tyrosine hydroxylase immunocytochemistry reveal different patterns of colocalization in retinal neurons of various vertebrates. Journal of Comparative Neurology 296, 173178.CrossRefGoogle ScholarPubMed
Yang, C.Y. & Yazulla, S. (1988). Localization of putative GABAer-gic neurons in the larval tiger salamander retina by immunocytochcmical and autoradiographical methods. Journal of Comparative Neurology 277, 96108.CrossRefGoogle Scholar
Yazulla, S. (1986). GABAergic mechanisms in the retina. In Progress in Retinal Research, Vol. 5, ed. Osborne, N.N. & Chader, G.J., pp. 152. Oxford: Pergamon Press.Google Scholar