Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-02T14:57:25.143Z Has data issue: false hasContentIssue false

Differential expression of three T-type calcium channels in retinal bipolar cells in rats

Published online by Cambridge University Press:  01 March 2009

CAIPING HU
Affiliation:
Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
ANDING BI
Affiliation:
Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
ZHUO-HUA PAN*
Affiliation:
Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
*
Address correspondence and reprint requests to: Zhuo-Hua Pan, Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 540 E. Canfield Avenue, Detroit, MI 48201. E-mail: zhpan@med.wayne.edu

Abstract

Retinal bipolar cells convey visual information from photoreceptors to retinal third-order neurons, amacrine and ganglion cells, with graded potentials through diversified cell types. To understand the possible role of voltage-dependent T-type Ca2+ currents in retinal bipolar cells, we investigated the pharmacological and biophysical properties of T-type Ca2+ currents in acutely dissociated retinal cone bipolar cells from rats using whole-cell patch-clamp recordings. We observed a broad group of cone bipolar cells with prominent T-type Ca2+ currents (T-rich) and another group with prominent L-type Ca2+ currents (L-rich). Based on the pharmacological and biophysical properties of the T-type Ca2+ currents, T-rich cone bipolar cells could be divided into three subgroups. Each subgroup appeared to express a single dominant T-type Ca2+ channel subunit. The T-type calcium currents could generate low-threshold regenerative potentials or spikes. Our results suggest that T-type Ca2+ channels may play an active and distinct signaling role in second-order neurons of the visual system, in contrast to the common signaling by L-rich bipolar cells.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Awatramani, G.B. & Slaughter, M.M. (2000). Origin of transient and sustained responses in ganglion cells of the retina. The Journal of Neuroscience 20, 70877095.CrossRefGoogle ScholarPubMed
Berntson, A. & Taylor, W.R. (2000). Response characteristics and receptive field widths of on-bipolar cells in the mouse retina. Journal of Physiology (London) 524, 879889.CrossRefGoogle ScholarPubMed
Bobkov, Y.V. & Ache, B.W. (2007). Intrinsically bursting olfactory receptor neurons. Journal of Neurophysiology 97, 10521057.CrossRefGoogle ScholarPubMed
Burrone, J. & Lagnado, L. (1997). Electrical resonance and Ca2+ influx in the synaptic terminal of depolarizing bipolar cells from the goldfish retina. Journal of Physiology (London) 505, 571584.CrossRefGoogle ScholarPubMed
Cens, T., Rousset, M., Kajava, A. & Charnet, P. (2007). Molecular determinant for specific Ca/Ba selectivity profiles of low and high threshold Ca2+ channels. The Journal of General Physiology 130, 415425.CrossRefGoogle ScholarPubMed
Chemin, J., Traboulsie, A. & Lory, P. (2006). Molecular pathways underlying the modulation of T-type calcium channels by neurotransmitters and hormones. Cell Calcium 40, 121134.CrossRefGoogle ScholarPubMed
Connaughton, V.P. & Maguire, G. (1998). Differential expression of voltage-gated K+ and Ca2+ currents in bipolar cells in the zebrafish retinal slice. The European Journal of Neuroscience 10, 13501362.CrossRefGoogle ScholarPubMed
Cribbs, L.L., Lee, J., Yang, J., Satin, J., Zhang, Y., Daud, A., Barcley, J., Williamson, M.P., Fox, M., Rees, M. & Perez-Reyes, E. (1998). Cloning and characterization of α1H from human heart, a member of the T-type Ca2+ channel gene family. Circulation Research 83, 103109.CrossRefGoogle Scholar
Cui, J., Ma, Y.-P., Lipton, S. A. & Pan, Z.-H. (2003). Glycine receptors and glycinergic synaptic input at the axon terminals of mammalian retinal rod bipolar cells. Journal of Physiology (London) 553, 895909.CrossRefGoogle ScholarPubMed
de la Villa, P., Vaquero, C.F. & Kaneko, A. (1998). Two types of Ca2+ currents of the mouse bipolar cells recorded in the retinal slice preparation. The European Journal of Neuroscience 10, 317323.CrossRefGoogle ScholarPubMed
Euler, T. & Masland, S.H. (2000). Light-evoked responses of bipolar cells in a mammalian retina. Journal of Neurophysiology 83, 18171829.CrossRefGoogle Scholar
Euler, T. & Wässle, H. (1995). Immunocytochemical identification of cone bipolar cells in the rat retina. The Journal of Comparative Neurology 361, 461478.CrossRefGoogle ScholarPubMed
Euler, T. & Wässle, H. (1998). Different contributions of GABAA and GABAC receptors to rod and cone bipolar cells in a rat retinal slice preparation. Journal of Neurophysiology 79, 13841395.CrossRefGoogle Scholar
Gillette, M.A. & Dacheux, R.F. (1995). GABA- and glycine-activated currents in the rod bipolar cell of the rabbit retina. Journal of Neurophysiology 74, 856875.CrossRefGoogle ScholarPubMed
Hamill, O.P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F.J. (1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Archiv 391, 85100.CrossRefGoogle ScholarPubMed
Hartveit, E. (1997). Functional organization of cone bipolar cells in the rat retina. Journal of Neurophysiology 77, 17161730.CrossRefGoogle ScholarPubMed
Heidelberger, R. & Matthews, G. (1992). Calcium influx and calcium current in single synaptic terminals of goldfish retinal bipolar neurons. Journal of Physiology (London) 447, 235256.CrossRefGoogle ScholarPubMed
Hildebrand, M.E., David, L.S., Hamid, J., Mulatz, K., Garcia, E., Zamponi, G.W. & Snutch, T.P. (2007). Selective inhibition of Cav3.3 T-type calcium channels by Gq/11-coupled muscarinic acetylcholine receptors. Journal of Biological Chemistry 282, 2104321055.CrossRefGoogle Scholar
Hobom, M., Dai, S., Marais, E., Lacinova, L., Hofmann, F. & Klugbauer, N. (2000). Neuronal distribution and functional characterization of the calcium channel α2-δ2 subunit. The European Journal of Neuroscience 12, 12171226.CrossRefGoogle Scholar
Huguenard, J.R. (1998). Low-voltage-activated (T-type) calcium-channel genes identified. Trends in Neurosciences 21, 451452.CrossRefGoogle ScholarPubMed
Ichinose, T. & Lukasiewicz, P.D. (2007). Ambient light regulates Na+ channel activity to dynamically control retinal signaling. The Journal of Neuroscience 27, 47564764.CrossRefGoogle Scholar
Ichinose, T., Shields, C.R. & Lukasiewicz, P.D. (2005). Na+ channels in transient retinal bipolar cells enhance visual responses in ganglion cells. The Journal of Neuroscience 25, 18561865.CrossRefGoogle Scholar
Jevtovic-Todorovic, V. & Todorovic, S.M. (2006). The role of peripheral T-type calcium channels in pain transmission. Cell Calcium 40, 197203.CrossRefGoogle ScholarPubMed
Kaneko, A., Pinto, L.H. & Tachibana, M. (1989). Transient calcium current of retinal bipolar cells of the mouse. Journal of Physiology (London) 410, 613629.CrossRefGoogle ScholarPubMed
Kaneko, A., Suzuki, S., Pinto, L.H., & Tachibana, M. (1991). Membrane currents and pharmacology of retinal bipolar cells: A comparative study on goldfish and mouse. Comparative Biochemistry and Physiology 98, 115127.Google ScholarPubMed
Karschin, A. & Wässle, H. (1990). Voltage- and transmitter-gated currents in isolated rod bipolar cells of rat retina. Journal of Neurophysiology 63, 860876.CrossRefGoogle ScholarPubMed
Lee, J.H., Gomora, J.C., Cribbs, L.L. & Perez-Reyes, E. (1999). Nickel block of three cloned T-type calcium channels: Low concentrations selectively block alpha1H. Biophysical Journal 77, 30343042.CrossRefGoogle ScholarPubMed
Lukasiewicz, P.D. & Werblin, F.S. (1994). A novel GABA receptor modulates synaptic transmission from bipolar to ganglion and amacrine cells in the tiger salamander retina. Journal of Neuroscience 14, 12131223.CrossRefGoogle ScholarPubMed
Ma, Y.P., Cui, J.J. & Pan, Z.H. (2005). Heterogeneous expression of voltage-dependent Na+ and K+ channels in mammalian retinal bipolar cells. Visual Neuroscience 22, 119133.CrossRefGoogle Scholar
Ma, Y.P. & Pan, Z.-H. (2003). Spontaneous regenerative activity in mammalian retinal bipolar cells: Roles of multiple subtypes of voltage-dependent Ca2+ channels. Visual Neuroscience 20, 131139.CrossRefGoogle ScholarPubMed
Mao, B.Q., MacLeish, P.R. & Victor, J.D. (1998). The intrinsic dynamics of retinal bipolar cells isolated from tiger salamander. Visual Neuroscience 15, 425438.CrossRefGoogle ScholarPubMed
McRory, J.E., Santi, C.M., Hamming, K.S., Mezeyova, J., Sutton, K.G., Baillie, D.L., Stea, A. & Snutch, T.P. (2001). Molecular and functional characterization of a family of rat brain T-type calcium channels. Journal of Biological Chemistry 276, 39994011.CrossRefGoogle ScholarPubMed
Maguire, G., Maple, B., Lukasiewicz, P. & Werblin, F. (1989). Amino butyrate type B receptor modulation of L-type calcium channel current at bipolar cell terminals in the retina of the tiger salamander. Proceedings of the National Academy of Sciences of the United States of America 86, 1014410147.CrossRefGoogle Scholar
Mojumder, D.K., Sherry, D.M. & Frishman, L.J. (2008). Contribution of voltage-gated sodium channels to the b-wave of the mammalian flash electroretinogram. Journal of Physiology (London) 586, 25512580.CrossRefGoogle Scholar
Monteil, A., Chemin, J., Leuranguer, V., Altier, C., Mennessier, G., Bourinet, E., Lory, P. & Nargeot, J. (2000). Specific properties of T-type calcium channels generated by the human alpha 1I subunit. Journal of Biological Chemistry 275, 1653016535.CrossRefGoogle ScholarPubMed
Murbartian, J., Arias, J.M., Lee, J.H., Gomora, J.C. & Perez-Reyes, E. (2002). Alternative splicing of the rat Ca(v)3.3 T-type calcium channel gene produces variants with distinct functional properties. FEBS Letters 528, 272278.CrossRefGoogle ScholarPubMed
Neher, E. (1992). Correction for liquid junction potentials in patch clamp experiments. Methods in Enzymology (FEBS Letters) 207, 123131.CrossRefGoogle ScholarPubMed
Nelson, M.T., Joksovic, P.M., Su, P., Kang, H.-W., Deusen, A.V., Baumgart, J.P., David, L.S., Snutch, T.P., Barrett, P.Q., Lee, J.-H., Zorumski, C.F., Perez-Reyes, E. & Todorovic, M.S. (2007). Molecular mechanisms of subtype-specific inhibition of neuronal T-type calcium channels by ascorbate. Journal of Neuroscience 27, 1257712583.CrossRefGoogle ScholarPubMed
Pan, Z.-H. (2000). Differential expression of high- and two types of low-voltage-activated calcium currents in rod and cone bipolar cells of the rat retina. Journal of Neurophysiology 83, 513527.CrossRefGoogle ScholarPubMed
Pan, Z.H., Hu, H.J., Perring, P. & Andrade, R. (2001). T-type Ca2+ channels mediate neurotransmitter release in retinal bipolar cells. Neuron 32, 8998.CrossRefGoogle ScholarPubMed
Pan, Z.-H. & Lipton, S.A. (1995). Multiple GABA receptor subtypes mediate inhibition of calcium responses at rat retinal bipolar cell terminals. Journal of Neuroscience 15, 26682679.CrossRefGoogle ScholarPubMed
Perez-Reyes, E. (2003). Molecular physiology of low-voltage-activated T-type calcium channels. Physiological Reviews 83, 117161.CrossRefGoogle ScholarPubMed
Perez-Reyes, E., Cribbs, L.L., Daud, A., Lacerda, A.E., Barclay, J., Williamson, M.P., Fox, M., Rees, M. & Lee, J.H. (1998). Molecular characterization of a neuronal low-voltage-activated T-type calcium channel. Nature 391, 896900.CrossRefGoogle ScholarPubMed
Protti, D.A., Flores-Herr, N. & von Gersdorff, H. (2000). Light evokes Ca2+ spikes in the axon terminal of a retinal bipolar cell. Neuron 25, 215227.CrossRefGoogle ScholarPubMed
Protti, D.A. & Llano, I. (1998). Calcium currents and calcium signaling in rod bipolar cells of rat retinal slices. The Journal of Neuroscience 18, 37153724.CrossRefGoogle ScholarPubMed
Satoh, H., Aoki, K., Watanabe, S.I. & Kaneko, A. (1998). L-type calcium channels in the axon terminal of mouse bipolar cells. Neuroreport 9, 21612165.CrossRefGoogle ScholarPubMed
Singer, J.H. & Diamond, J.S. (2003). Sustained Ca2+ entry elicits transient postsynaptic currents at a retinal ribbon synapse. Journal of Neuroscience 23, 1092310933.CrossRefGoogle Scholar
Tachibana, M., Okada, T., Arimura, T. & Kobayashi, K. (1993). Dihydropyridine-sensitive calcium current mediates neurotransmitter release from retinal bipolar cells. Annals of the New York Academy of Sciences 707, 359361.CrossRefGoogle ScholarPubMed
Talley, E.M., Cribbs, L.L., Lee, J.H., Daud, A., Perez-Reyes, E. & Bayliss, D.A. (1999). Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. The Journal of Neuroscience 19, 18951911.CrossRefGoogle ScholarPubMed
Tessier-Lavigne, M., Attwell, D., Mobbs, P. & Wilson, M. (1988). Membrane current in retinal bipolar cells of the axolotl. The Journal of General Physiology 91, 4972.CrossRefGoogle ScholarPubMed
Todorovic, S.M., Jevtovic-Todorovic, V., Meyenburg, A., Mennerick, S., Perez-Reyes, E., Romano, C., Olney, J.W. & Zorumski, C.F. (2001). Redox modulation of T-type calcium channels in rat peripheral nociceptors. Neuron 31, 7585.CrossRefGoogle ScholarPubMed
Trexler, E.B., Li, W., Mills, S.L. & Massey, S.C. (2001). Coupling from AII amacrine cells to ON cone bipolar cells is bidirectional. The Journal of Comparative Neurology 437, 408422.CrossRefGoogle Scholar
Wässle, H. (2004). Parallel processing in the mammalian retina. Nature Reviews. Neuroscience 5, 747757.CrossRefGoogle ScholarPubMed
Werblin, F.S. & Dowling, J.E. (1969). Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. Journal of Neurophysiology 32, 3955.CrossRefGoogle ScholarPubMed
Wu, S.M., Gao, F. & Maple, B.R. (2000). Functional architecture of synapses in the inner retina: Segregation of visual signals by stratification of bipolar cell axon terminals. Journal of Neuroscience 20, 44624470.CrossRefGoogle ScholarPubMed
Xin, D. & Bloomfield, S.A. (1999). Comparison of the responses of AII amacrine cells in the dark- and light-adapted rabbit retina. Visual Neuroscience 16, 653665.CrossRefGoogle ScholarPubMed
Yu, Y., Satoh, H., Wu, S.M. & Marshak, D.W. (2008). Histamine enhances voltage-gated potassium currents of ON bipolar cells in macaque retina. Investigative Ophthalmology & Visual Science 50, 959965.CrossRefGoogle Scholar
Zenisek, D. & Matthews, G. (1998). Calcium action potentials in retinal bipolar neurons. Visual Neuroscience 15, 6975.CrossRefGoogle ScholarPubMed