Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-03T04:28:08.030Z Has data issue: false hasContentIssue false

Evidence Against a Direct Membrane Effect in the Mechanism of Action of Graminicides

Published online by Cambridge University Press:  12 June 2017

Joseph M. Di Tomaso*
Affiliation:
Dep. Soil, Crop, and Atmos. Sci., Cornell Univ., Ithaca, NY 14853

Abstract

The aryloxyphenoxypropionate and cyclohexanedione herbicides, which inhibit acetyl-coenzyme A carboxylase (EC 6.4.1.2), have also been hypothesized to act at specific sites on the plasmalemma. An impermeant sulfhydryl binding agent was reported to block the diclofop acid-induced depolarization of the membrane potential (Em) in rigid ryegrass. A correlation between the antagonistic interaction with auxin herbicides both in the field and in the Em response, and the repolarization of Em in herbicide-resistant rigid ryegrass following removal of diclofop acid also provide support for this hypothesis. However, similar membrane responses in resistant grasses and broadleaf species suggest that the membrane response may not be important in the phytotoxic activity of the postemergence graminicides under field conditions. In addition, an antagonistic interaction was not observed in roots of susceptible grasses exposed to combinations of diclofop-methyl and 2,4-D. Furthermore, the repolarization of the Em in diclofop-resistant rigid ryegrass was correlated to differential acidification of the external solution and an increase in the protonated form of diclofop acid, rather than a site-specific interaction at the plasmalemma. Although the membrane response is probably not involved in herbicide phytotoxicity in agricultural systems, a higher extracellular pH in the resistant biotypes of rigid ryegrass may inhibit the movement of these weak-acid herbicides across the plasmalemma, and possibly contribute to increased herbicide tolerance.

Type
Special Topics
Copyright
Copyright © 1994 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Al-Khatib, K., Parker, R., and Fuerst, E. P. 1992. Foliar absorption and translocation of herbicides from aqueous solution and treated soil. Weed Sci. 40:281287.CrossRefGoogle Scholar
2. Andrews, M. 1990. Diclofop-methyl antagonism by broadleaf weed herbicides: the importance of leaf expansion rates. Weed Res. 30:331340.Google Scholar
3. Andrews, M., Dickson, R. L., Foreman, M. H., Dastgheib, F., and Field, R. J. 1989. The effects of different external nitrate concentrations on growth of Avena sativa cv. Amuri treated with diclofop-methyl. Ann. Appl. Biol. 114:339348.Google Scholar
4. Betts, K. J., Ehlke, N. J., Wyse, D. L., Gronwald, J. W., and Somers, D. A. 1992. Mechanism of inheritance of diclofop resistance in Italian ryegrass (Lolium multiflorum). Weed Sci. 40:184189.Google Scholar
5. Boldt, L. D. and Barrett, M. 1991. Effects of diclofop and haloxyfop on lipid synthesis in corn (Zea mays) and bean (Phaseolus vulgaris). Weed Sci. 39:143148.Google Scholar
6. Brezeanu, A. G., Davis, D. G., and Shimabukuro, R. H. 1976. Ultrastructural effects and translocation of methyl-2-(4-(2,4-dichlorophenoxy)-phenoxy)propanoate in wheat (Triticum aestivum) and wild oat (Avena fatua). Can. J. Bot. 54:20382047.Google Scholar
7. Burton, J. D., Gronwald, J. W., Somers, D. A., Connelly, J. A., Gengenbach, B. G., and Wyse, D. L. 1987. Inhibition of plant acetyl-coenzyme A carboxylase by the herbicides sethoxydim and haloxyfop. Biochem. Biophys. Res. Comm. 148:10391044.Google Scholar
8. Burton, J. D., Gronwald, J. W., Somers, D. A., Gengenbach, B. G., and Wyse, D. L. 1989. Inhibition of corn acetyl-CoA carboxylase by cyclohexanedione and aryloxyphenoxypropionate herbicides. Pestic. Biochem. Physiol. 34:7685.Google Scholar
9. Christopher, J. T., Powles, S. B., and Holtum, J. A. M. 1992. Resistance to acetolactate synthase-inhibiting herbicides in annual ryegrass (Lolium rigidum) involves at least two mechanisms. Plant Physiol. 100:19091913.Google Scholar
10. Christopher, J. T., Powles, S. B., Liljegren, D. R., and Holtum, J. A. M. 1991. Cross-resistance to herbicides in annual ryegrass (Lolium rigidum). II. Chlorsulfuron resistance involves a wheat-like detoxification system. Plant Physiol. 95:10361043.Google Scholar
11. Cobb, A. H. and Barnwell, P. 1989. Anti-auxin activity of graminicides. Brighton Crop Prot. Conf.-Weeds. 3B:183190.Google Scholar
12. Colby, S. R., Wojtaszek, T., and Warren, G. F. 1965. Synergistic and antagonistic combinations for broadening herbicidal selectivity. Weeds 13:8791.Google Scholar
13. Cotterman, J. C. and Saari, L. L. 1992. Rapid metabolic inactivation is the basis for cross-resistance to chlorsulfuron in diclofop-methyl-resistant rigid ryegrass (Lolium rigidum) biotype SR4/84. Pestic. Biochem. Physiol. 43:182192.Google Scholar
14. Dastgheib, F., Andrews, M., Field, R. J., and Foreman, M. H. 1990. Effect of mannitol induced water stress on the tolerance of cultivated oat (Avena sativa L.) to diclofop-methyl. Weed Res. 30:171179.Google Scholar
15. Deschamps, R. J. A., Hsiao, A. I., and Quick, W. A. 1990. Antagonistic effect of MCPA on fenoxaprop activity. Weed Sci. 38:6266.CrossRefGoogle Scholar
16. Devine, M. D., Heap, I. M., Morrison, I. N., Romano, M. L., and Hall, J. C. 1991. Resistance to acetyl-CoA carboxylase inhibitors in wild oat (Avena fatua L.). North Cent. Weed Sci. Soc. Proc. 46:8788.Google Scholar
17. DiTomaso, J. M. 1993. Membrane response to diclofop acid is pH-dependent and regulated by the protonated form of the herbicide in roots of pea and resistant and susceptible rigid ryegrass. Plant Physiol. 102:13311336.Google Scholar
18. DiTomaso, J. M., Brown, P. H., Stowe, A. E., Linscott, D. L., and Kochian, L. V. 1991. Effects of diclofop and diclofop-methyl on membrane potentials in roots of intact oat, maize, and pea seedlings. Plant Physiol. 95:10631069.CrossRefGoogle ScholarPubMed
19. DiTomaso, J. M., Brown, P. H., and Stowe, A. E. 1993. Inhibition of lipid synthesis by diclofop-methyl is age-dependent in roots of oat and corn. Pestic. Biochem. Physiol. 45:210219.CrossRefGoogle Scholar
20. Dotray, P. A., DiTomaso, J. M., Gronwald, J. W., Wyse, D. L., and Kochian, L. V. 1993. Effects of acetyl-coenzyme A carboxylase inhibitors on electrical membrane potential in roots of sethoxydim-tolerant and -susceptible corn lines. Plant Physiol. 103:919924.Google Scholar
21. Duke, S. O. and Kenyon, W. H. 1988. Polycyclic alkanoic acids. Pages 71116 in Kearney, P. C. and Kaufman, D. D., eds. Herbicides: Chemistry, Degradation, and Mode of Action. Vol. 3. Marcel-Dekker, New York.Google Scholar
22. Fitzsimons, P. J., Miller, P. R., and Cobb, A. H. 1987. Auxin-induced H+-efflux: herbicide activity and antagonism. Br. Crop Prot. Conf.-Weeds. 3B5:179186.Google Scholar
23. Fletcher, R. A. and Drexler, D. M. 1980. Interactions of diclofop-methyl and 2,4-D in cultivated oats (Avena sativa). Weed Sci. 28:363366.Google Scholar
24. Gillespie, G. R. and Nalewaja, J. D. 1989. Influence of 2,4-D and MCPA formulations and oil on diclofop phytotoxicity. Weed Sci. 37:380384.Google Scholar
25. Gorecka, K., Shimabukuro, R. H., and Walsh, W. C. 1981. Aryl hydroxylation: a selective mechanism for the herbicides, diclofop-methyl and clofopisobutyl, in gramineous species. Physiol. Plant. 53:5563.Google Scholar
26. Gronwald, J. W. 1991. Lipid biosynthesis inhibitors. Weed Sci. 39:435449.Google Scholar
27. Gronwald, J. W., Eberlein, C. V., Betts, K. J., Baerg, R. J., Ehlke, N. J., and Wyse, D. L. 1992. Mechanism of diclofop resistance in an Italian ryegrass (Lolium multiflorum Lam.) biotype. Pestic. Biochem. Physiol. 44:126139.Google Scholar
28. Hall, C., Edgington, L. V., and Switzer, C. M. 1982. Translocation of different 2,4-D, bentazon, diclofop, or diclofop-methyl combinations in oat (Avena sativa) and soybean (Glycine max). Weed Sci. 30:676682.Google Scholar
29. Harwood, J. L. 1988. Fatty acid metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39:101138.Google Scholar
30. Hausler, R. E., Holtum, J. A. M., and Powles, S. B. 1991. Cross-resistance to herbicides in annual ryegrass (Lolium rigidum). IV. Correlation between membrane effects and resistance to graminicides. Plant Physiol. 97:10351043.Google Scholar
31. Heap, I. and Knight, R. 1986. The occurrence of herbicide cross-resistance in a population of annual ryegrass, Lolium rigidum, resistant to diclofop-methyl Aust. J. Agric. Res. 37:149156.Google Scholar
32. Heap, I. M. and Knight, R. 1990. Variation in herbicide cross-resistance among populations of annual ryegrass (Lolium rigidum) resistant to diclofop-methyl. Aust. J. Agric. Res. 41:121128.Google Scholar
33. Holl, F. B., Tritter, S. A., and Todd, B. G. 1986. Distribution of diclofop-methyl and metabolites in oat (Avena sativa L.) protoplasts. Weed Res. 26:421425.CrossRefGoogle Scholar
34. Holtum, J. A. M., Matthews, J. M., Hausler, R. E. Liljegren, D. R., and Powles, S. B. 1991. Cross-resistance to herbicides in annual ryegrass (Lolium rigidum). III. On the mechanism of resistance to diclofop-methyl. Plant Physiol. 97:10261034.Google Scholar
35. Holtum, J. A. M. and Powles, S. B. 1991. Annual ryegrass: an abundance of resistance, a plethora of mechanisms. Brighton Crop Prot. Conf.-Weeds 8A: 10711077.Google Scholar
36. Hoppe, H. H. 1981. Effect of diclofop-methyl on protein nucleic acid and lipid synthesis in tips of radicles from Zea mays L. Z. Pflanzenphysiol. Bd. 102:189197.Google Scholar
37. Hoppe, H. H. 1985. Differential effect of diclofop-methyl on fatty acid biosynthesis in leaves of sensitive and tolerant plant species. Pestic. Biochem. Physiol. 23:297308.Google Scholar
38. Hoppe, H. H. and Zacher, H. 1982. Inhibition of fatty acid biosynthesis in tips of radicles from tips of radicles from Zea mays by diclofop-methyl. Z. Pflanzenphysiol. Bd. 106:287298.Google Scholar
39. Hoppe, H. H. and Zacher, H. 1985. Inhibition of fatty acid biosynthesis in isolated bean and maize chloroplasts by herbicidal phenoxy-phenoxypropionic acid derivatives and structurally related compounds. Pestic. Biochem. Physiol. 24:298305.Google Scholar
40. Jackson, P. C. and Taylor, J. M. 1970. Effects of organic acids on ion uptake and retention in barley roots. Plant Physiol. 46:538542.Google Scholar
41. Jacobson, A., Shimabukuro, R. H., and McMichael, C. 1985. Response of wheat and oat seedlings to root-applied diclofop-methyl and 2,4-dichlorophenoxyacetic acid. Pestic. Biochem. Physiol. 24:6167.Google Scholar
42. Kafiz, B., Caussanel, J. P., Scalla, R., and Gaillardon, P. 1989. Interaction between diclofop-methyl and 2,4-D in wild oat (Avena fatua L.) and cultivated oat (Avena sativa L.), and fate of diclofop-methyl in cultivated oat. Weed Res. 29:299305.Google Scholar
43. Kobek, K., Focke, M., and Lichtenthaler, H. K. 1988. Fatty-acid biosynthesis and acetyl-CoA carboxylase as a target of diclofop, fenoxaprop and other aryloxyphenoxypropionic acid herbicides. Z. Naturforsch. 43c:4753.Google Scholar
44. Kobek, K. and Lichtenthaler, H. K. 1989. Inhibition of de novo fatty acid biosynthesis in isolated etioplasts by herbicides. Z. Naturforsch. 44c:669–667.Google Scholar
45. Kobek, K. and Lichtenthaler, H. K. 1989. Fatty-acid biosynthesis in isolated etioplasts and its inhibition by herbicides. Brighton Crop Prot. Conf.-Weeds 4D:471478.Google Scholar
46. Kobek, K. and Lichtenthaler, H. K. 1990. Effect of different cyclohexane-1,3-dione derivatives on the de novo fatty-acid biosynthesis in isolated oat chloroplasts. Z. Naturforsch. 45c:8488.CrossRefGoogle Scholar
47. Lichtenthaler, H. K. 1990. Mode of action of herbicides affecting acetyl-CoA carboxylase and fatty acid biosynthesis. Z. Naturforsch. 45c:521528.Google Scholar
48. Lucas, W. J., Wilson, C., and Wright, J. P. 1984. Perturbations of Chara plasmalemma transport function by 2-[4-(2′,4′-dichlorophenoxy)-phenoxy]propionic acid. Plant Physiol. 74:6166.Google Scholar
49. Marshall, L. C., Somers, D. A., Dotray, P. A., Gengenbach, B. G., Wyse, D. L., and Gronwald, J. W. 1992. Allelic mutations in acetyl-coenzyme A carboxylase confer herbicide tolerance in maize. Theor. Appl. Genet. 83:435442.CrossRefGoogle ScholarPubMed
50. Matthews, J. M., Holtum, J. A. M., Liljegren, D. R., Furness, B., and Powles, S. B. 1990. Cross-resistance to herbicides in annual ryegrass (Lolium rigidum). I. Properties of the herbicide target enzymes acetyl-coenzyme A carboxylase and acetolactase synthase. Plant Physiol. 94:11801186.Google Scholar
51. Mueller, T. C., Barrett, M., and Witt, W. W. 1990. A basis for the antagonistic effect of 2,4-D on halxoyfop-methyl toxicity to johnsongrass (Sorghum halepense). Weed Sci. 38:103107.Google Scholar
52. Nakahira, K., Haga, M., Uchiyama, M., and Suzuki, K. 1990. Comparative effects of quizalofop and its esters on acetyl-CoA carboxylase and fatty acid biosynthesis in corn leaf chloroplasts. J. Pestic. Sci. 15:189197.Google Scholar
53. O'Leary, N. F., O'Donovan, J. T., and Pendeville, G. N. 1980. Effect of diclofop-methyl and 2,4-D alone and in combination on leaf cell membrane permeability of wild oats and barley. Can. J. Plant Sci. 60:773775.Google Scholar
54. Olson, W. and Nalewaja, J. D. 1982. Effect of MCPA on 14C-diclofop uptake and translocation. Weed Sci. 30:5963.Google Scholar
55. Parker, W. B., Marshall, L. C., Burton, J. D., Somers, D. A., Wyse, D. L., Gronwald, J. W., and Gengenbach, B. G. 1990. Dominant mutations causing alterations in acetyl-coenzyme A carboxylase confer tolerance to cyclohexanedione and aryloxyphenoxypropionate herbicides in maize. Proc. Nat. Acad Sci. U.S.A. 87:71757179.CrossRefGoogle ScholarPubMed
56. Powles, S. B. and Matthews, J. M. 1992. Multiple herbicide resistance in annual ryegrass (Lolium rigidum). A driving force for the adoption of integrated weed management. Pages 113 in Denholm, I., Devonshire, A., and Holloman, D., eds. Achievements and Developments in Combating Pest Resistance. Elsevier Press, London.Google Scholar
57. Qureshi, F. A. and Vanden Born, W. H. 1979. Interaction of diclofop-methyl and MCPA on wild oats (Avena fatua). Weed Sci. 27:202205.Google Scholar
58. Ratterman, D. M. and Balke, N. E. 1989. Diclofop-methyl increases the proton permeability of isolated oat-root tonoplast. Plant Physiol. 91:756765.Google Scholar
59. Rendina, A. R., Beaudoin, J. D., Craig-Kennard, A. C., and Breen, M. K. 1989. Kinetics of inhibition of acetyl-coenzyme A carboxylase by the aryloxyphenoxypropionate and cyclohexanedione graminicides. Brighton Crop Prot. Conf.-Weeds 3B:163172.Google Scholar
60. Rendina, A. R., Craig-Kennard, A. C., Beaudoin, J. D., and Breen, M. K. 1990. Inhibition of acetyl-coenzyme A carboxylase by two classes of grass-selective herbicides. J. Agric. Food Chem. 38:12821287.Google Scholar
61. Rendina, A. R., Felts, J. M., Beaudoin, J. D., Craig-Kennard, A. C., Look, L. L., Paraskos, S. L., and Hagenah, J. A. 1988. Kinetic characterization, stereoselectivity, and species selectivity of the inhibition of plant acetyl-CoA carboxylase by the aryloxyphenoxypropionic acid grass herbicides. Arch. Biochem. Biophys. 265:219225.Google Scholar
62. Secor, J., Cseke, C., and Owen, W. J. 1989. The discovery of the selective inhibition of acetyl coenzyme A carboxylase activity by two classes of graminicides. Brighton Crop Prot. Conf.-Weeds. 3B: 145154.Google Scholar
63. Shimabukuro, M. A., Shimabukuro, R. H., and Walsh, W. C. 1982. The antagonism of IAA-induced hydrogen ion extrusion and coleoptile growth by diclofop-methyl. Physiol. Plant. 56:444452.Google Scholar
64. Shimabukuro, R. H. and Hoffer, B. L. 1991. Metabolism of diclofop-methyl in susceptible and resistant biotypes of Lolium rigidum . Pestic. Biochem. Physiol. 39:251260.Google Scholar
65. Shimabukuro, R. H. and Hoffer, B. L. 1992. Effect of diclofop on the membrane potential of herbicide-resistant and -susceptible annual ryegrass root tips. Plant Physiol. 98:14151422.Google Scholar
66. Shimabukuro, R. H., Walsh, W. C., and Hoerauf, R. A. 1979. Metabolism and selectivity of diclofop-methyl in wild oat and wheat. J. Agric. Food Chem. 27:615623.Google Scholar
67. Shimabukuro, R. H., Walsh, W. C., and Hoerauf, R. A. 1986. Reciprocal antagonism between the herbicides, diclofop-methyl and 2,4-D, in corn and soybean tissue culture. Plant Physiol. 80:612617.Google Scholar
68. Shimabukuro, R. H., Walsh, W. C., and Wright, J. P. 1989. Effect of diclofop-methyl and 2,4-D on transmembrane proton gradient: a mechanism for their antagonistic interaction. Physiol. Plant. 77:107114.Google Scholar
69. Stoltenberg, D. E., Gronwald, J. W., Wyse, D. L., Burton, J. D., Somers, D. A., and Gengenbach, B. G. 1989. Effect of sethoxydim and haloxyfop on acetyl-coenzyme A carboxylase activity in Festuca species. Weed Sci. 37:512516.Google Scholar
70. Taylor, H. F., Loader, M. P. C., and Norris, S. J. 1983. Compatible and antagonistic mixtures of diclofop-methyl and flamprop-methyl with herbicides used to control broadleaved weeds. Weed Res. 24:185190.Google Scholar
71. Taylor, H. F. and Loader, M. P. C. 1984. Metabolism of diclofop-methyl with reference to its interaction with other compounds. Pestic. Sci. 15:527528.Google Scholar
72. Todd, B. G. and Stobbe, E. H. 1980. The basis of the antagonistic effect of 2,4-D on diclofop-methyl toxicity to wild oat (Avena fatua). Weed Sci. 28:371377.Google Scholar
73. Weber, A., Fischer, E., von Branitz, H. S., and Luttge, U. 1988. The effects of the herbicide sethoxydim on transport processes in sensitive and tolerant grass species. I. Effects on the electrical membrane potential and alanine uptake. Z. Naturforsch. 43c:249256.Google Scholar
74. Wright, J. P. and Shimabukuro, R. H. 1987. Effects of diclofop and diclofop-methyl on the membrane potentials of wheat and oat coleoptiles. Plant Physiol. 85:188193.Google Scholar