Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-07T03:49:51.444Z Has data issue: false hasContentIssue false

Integrated Weed Management Systems for Irrigated Corn (Zea mays) Production in Colorado—A Case Study

Published online by Cambridge University Press:  12 June 2017

Mark J. Vangessel
Affiliation:
Dep. Plant Pathol, and Weed Sci., Colorado State Univ., Ft. Collins, CO 80523
Edward E. Schweizer
Affiliation:
U.S. Dep. Agric., Water Manage. Res., Fort Collins, CO 80523
Donald W. Lybecker
Affiliation:
Dep. Agric. and Res. Econ.
Philip Westra
Affiliation:
Dep. Plant Pathol. and Weed Sci., Colorado State Univ., Fort Collins, 80523

Abstract

Cooperative research was initiated by a multidisciplinary team of weed scientists and agricultural economists in 1975 that laid the foundation for integrated weed management research in Colorado. Colorado's integrated weed management research has four phases: weed seed bank decline, systems approach to weed management, bioeconomic modeling, and multiple weed management tactics. Each phase considered weed seed bank, weed control efficacy, weed control costs, crop yield, and gross margin. All four phases emphasize the need for a weed management system that minimizes seed production in situations where a high soil weed seed bank exists. However, once the weed seed bank is reduced, a weed management program with less than 100% weed control can be employed without increasing the seed bank. Intensive weed management systems are seldom justified when economics, weed control, and weed seed bank are considered. Integrated weed management approaches require integrating crop and weed biology with management tactics. Integrated weed management requires advanced managerial skills and often more time than traditional approaches.

Type
Symposium
Copyright
Copyright © 1996 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Ball, D. A. 1992. Weed seedbank response to tillage, herbicides, and croprotation sequences. Weed Sci. 40: 654659.Google Scholar
2. Ball, D. A. and Miller, S. D. 1990. Weed seed population response to tillage and herbicide use in three irrigated cropping sequence. Weed Sci. 38: 511517.CrossRefGoogle Scholar
3. Bridges, D. C. and Walker, R. H. 1985. Influence of weed management and cropping systems on sicklepod (Cassia obtusifolia) seed in the soil. Weed Sci. 33: 800804.Google Scholar
4. Buhler, D. D., Gunsolus, J. L., and Ralston, D. F. 1992. Integrated weed management techniques to reduce herbicide inputs in soybean. Agron. J. 84: 973978.Google Scholar
5. Burnside, O. C., Fenster, C. R., Evetts, L. L., and Mumm, R. F. 1981. Germination of exhumed weed seed in Nebraska. Weed Sci. 29: 577586.CrossRefGoogle Scholar
6. Burnside, O. C., Moomaw, R. S., Roeth, F. W., Wicks, G. A., and Wilson, R. G. 1986. Weed seed demise in soil in weed-free corn (Zea mays) production across Nebraska. Weed Sci. 34: 248251.Google Scholar
7. Egley, G. H. and Williams, R. D. 1990. Decline of weed seeds and seedling emergence over five years as affected by soil disturbances. Weed Sci. 38: 504510.CrossRefGoogle Scholar
8. Forcella, F. 1992. Prediction of weed seedling densities from buried seed reserves. Weed Res. 32: 2938.Google Scholar
9. Gunsolus, J. L. 1990. Mechanical and cultural weed control in corn and soybeans. Am. J. Altern. Agric. 5: 114119.CrossRefGoogle Scholar
10. King, R. P., Lybecker, D. W., Schweizer, E. E., and Zimdahl, R. L. 1986. Bioeconomic modeling to simulate weed control strategies for continuous corn (Zea mays). Weed Sci. 34: 972979.CrossRefGoogle Scholar
11. Lybecker, D. W., Schweizer, E. E., and King, R. P. 1988. Economic analysis of four weed management systems. Weed Sci. 36: 846849.CrossRefGoogle Scholar
12. Lybecker, D. W., Schweizer, E. E., and King, R. P. 1991. Weed management decisions in corn based on bioeconomic modeling. Weed Sci. 39: 124129.CrossRefGoogle Scholar
13. Lybecker, D. W., Schweizer, E. E., and Westra, P. 1991. Computer aided decisions for weed management in corn. Proc. West. Agric. Econ. Assoc., Portland, OR. p. 234239.Google Scholar
14. Mortensen, D. A. and Coble, H. D. 1991. Two approaches to weed control decision-aid software. Weed Technol. 5: 445452.Google Scholar
15. Mt. Pleasant, J., Burt, R. F., and Frisch, J. C. 1994. Integrating mechanical and chemical weed management in corn (Zea mays). Weed Technol. 8: 217223.Google Scholar
16. Mulder, T. A. and Doll, J. D. 1993. Integrating reduced herbicide use with mechanical weeding in corn (Zea mays). Weed Technol. 7: 382389.Google Scholar
17. Schreiber, M. M. 1992. Influence of tillage, crop rotation, and weed management on giant foxtail (Setaria faberi) population dynamics and corn yield. Weed Sci. 40: 645653.CrossRefGoogle Scholar
18. Schweizer, E. E., Lybecker, D. W., and Zimdahl, R. L. 1988. Systems approach to weed management in irrigated crops. Weed Sci. 36: 840845.Google Scholar
19. Schweizer, E. E., Lybecker, D. W., Wiles, L. J., and Westra, P. 1993. Bioeconomic weed management models in crop production. Pages 103107 in Buxton, D. R., Shibles, R., Forsberg, R. A., Blad, B. L., Asay, K. H., Paulsen, G. M., and Wilson, R. F., eds. International Crop Science I. Crop Sci. Soc. Amer., Madison, WI.Google Scholar
20. Schweizer, E. E., Westra, P., and Lybecker, D. W. 1994. Controlling weeds in corn (Zea mays) rows with an in-row cultivator versus decisions made by a computer model. Weed Sci. 42: 593600.CrossRefGoogle Scholar
21. Schweizer, E. E. and Zimdahl, R. L. 1983. Weed seed decline in irrigated soil after six years of continuous corn (Zea mays) and herbicides. Weed Sci. 32: 7683.CrossRefGoogle Scholar
22. Schweizer, E. E. and Zimdahl, R. L. 1984. Weed seed decline in irrigated soil after rotation of crops and herbicides. Weed Sci. 32: 8489.CrossRefGoogle Scholar
23. VanGessel, M. J., Schweizer, E. E., Lybecker, D. W., and Westra, P. 1995. Compatibility and efficiency of in-row cultivation for weed management in corn (Zea mays). Weed Technol. 9: 754760.Google Scholar
24. VanGessel, M. J., Westra, P., Wiles, L. J., and Schweizer, E. E. 1993. Weed management in dry beans utilizing within row cultivation and reduced rates of postemergence herbicides. Abstr. Weed Sci. Soc. Amer. 33: 13.Google Scholar
25. Wiles, L. J., Wilkerson, G. G., and Gold, H. J. 1992. Value of information about weed distribution for improving postemergence control decisions. Crop. Prot. 11: 547554.CrossRefGoogle Scholar
26. Wiles, L. J., Wilkerson, G. G., Gold, H. J., and Coble, H. D. 1992. Modeling weed distribution for improved postemergence control decisions. Weed Sci. 40: 546553.CrossRefGoogle Scholar
27. Wilson, R. G. 1988. Biology of weed seeds in the soil. Pages 2539 in Altieri, M. A. and Liebman, M., eds. Weed Management in Agroecosystems: Ecological Approaches. CRS Press, Boca Raton, FL.Google Scholar