Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-14T04:22:36.944Z Has data issue: false hasContentIssue false

Resistance in Canadian biotypes of wild mustard (Sinapis arvensis) to acetolactate synthase inhibiting herbicides

Published online by Cambridge University Press:  20 January 2017

Connie Sauder
Affiliation:
AAFC-ECORC, K. W. Neatby Bldg., C.E.F., Ottawa, ON K1A 0C6, Canada
Hugh J. Beckie
Affiliation:
AAFC, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK S7N 0X2, Canada

Abstract

Multiple cases of ALS inhibitor-resistant weed biotypes are reported for many species, including wild mustard. The physiological extent and molecular basis of resistance to ALS inhibitors was compared in four biotypes of wild mustard from western Canada: a sulfonylurea (SU)-resistant (R) biotype from Manitoba detected in 1992; an SU (ethametsulfuron)-R biotype from Alberta detected in 1993 (metabolism-based resistance); an SU-R biotype from Manitoba detected in 2002; and a SU- and imidazolinone (IMI)-R biotype from Saskatchewan detected in 2002. Herbicide dose-response experiments confirmed that the two Manitoba biotypes were resistant to the SU herbicides ethametsulfuron and tribenuron : thifensulfuron mixture, whereas the Saskatchewan biotype was resistant to both SU herbicides and to imazethapyr, an IMI herbicide. Sequence analysis of the ALS gene detected target site mutations in three of the four R biotypes, with amino acid substitutions Pro197 (CCT) to Ser (TCT) [Domain A of the gene] in the two SU-R Manitoba biotypes and Trp574 (TGG) to Leu (TTG) [Domain B] in the Saskatchewan biotype. The Alberta SU-R biotype had the same ALS nucleotide and amino acid sequence as the susceptible population at these two positions. Two heterozygous individuals [Trp574 (Tt/gG)] were detected in the Saskatchewan biotype, and genetic segregation for nucleotide bases and resistance phenotype was consistent with single gene control. Nucleotide variation in neutral regions of the ALS gene varied with biotype, with no variation in the two Manitoba biotypes, two variants in the Saskatchewan biotype, and 16 neutral nucleotide polymorphisms (0.9%) in the Alberta biotype. The occurrence of at least three different ALS inhibitor-R biotypes in this important weed species is likely to impact negatively on the use of ALS inhibitors, such as the IMIs, and serves as a warning for strict implementation of herbicide rotations to prevent or delay the evolution and spread of such populations.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ali, A., McLaren, R. D., and Souza-Machado, V. 1986. Chloroplastic resistance to triazine herbicides in Sinapis arvensis (wild mustard). Weed Res 26:3944.Google Scholar
Bernasconi, P., Woodworth, A. R., Rosen, B. A., Subramanian, M. V., and Siehl, D. L. 1995. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J. Biol. Chem 270:1738117385.Google Scholar
Boutsalis, P., Karotam, J., and Powles, S. B. 1999. Molecular basis of resistance to acetolactate synthase-inhibiting herbicides in Sisymbrium orientale and Brassica tournefortii . Pestic. Sci 55:507516.Google Scholar
Devine, M. D. and Eberlein, C. V. 1997. Physiological, biochemical and molecular aspects of herbicide resistance based on altered target sites. Pages 159185 in Roe, R. M., Burton, J. D., and Kuhr, R. J. eds. Herbicide Activity: Toxicology, Biochemistry and Molecular Biology. Amsterdam, The Netherlands: IOS Press.Google Scholar
Devine, M. D. and Shukla, A. 2000. Altered target sites as a mechanism of herbicide resistance. Crop Prot 19:881889.CrossRefGoogle Scholar
Diebold, R. S., McNaughton, K. E., Lee, E. A., and Tardif, F. J. 2003. Multiple resistance to imazethapyr and atrazine in Powell amaranth (Amaranthus powellii). Weed Sci 51:312318.Google Scholar
Eberlein, C. V., Guttieri, M. J., Mallory-Smith, C. A., Thill, D. C., and Baerg, R. J. 1997. Altered acetolactate synthase activity in ALS-inhibitor resistant prickly lettuce (Lactuca serriola). Weed Sci 45:212217.Google Scholar
Foes, M. J., Liu, L., Tranel, P. J., Wax, L. M., and Stoller, E. W. 1998. A biotype of common waterhemp (Amaranthus rudis) resistant to triazine and ALS herbicides. Weed. Sci 46:514520.Google Scholar
Foes, M. J., Liu, L., Vigue, G., Stroller, E. W., Wax, L. M., and Tranel, P. J. 1999. A kochia (Kochia scoparia) biotype resistant to triazine and ALS-inhibiting herbicides. Weed Sci 47:2027.Google Scholar
Gomez, K. A. and Gomez, A. A. 1984. Statistical Procedures for Agricultural Research (Second edition). New York: J. Wiley. 680 p.Google Scholar
Guttieri, M. J., Eberlein, C. V., Mallory-Smith, C. A., Thill, D. C., and Hoffman, D. L. 1992. DNA sequence variation in Domain A of the acetolactate synthase genes of herbicide-resistant and -susceptible weed biotypes. Weed Sci 40:670676.Google Scholar
Guttieri, M. J., Eberlein, C. V., and Thill, D. C. 1995. Diverse mutations in the acetolactate synthase gene confer chlorsulfuron resistance in kochia (Kochia scoparia) biotypes. Weed Sci 43:175178.Google Scholar
Hanson, B. D., Park, K. W., Mallory-Smith, C. A., and Thill, D. C. 2004. Resistance of Camelina microcarpa to acetolactate synthase inhibiting herbicides. Weed Res 44:187194.Google Scholar
Hattori, J., Brown, D., Mourad, G., Labbé, H., Ouellet, T., Sunohara, G., Rutledge, R., King, J., and Miki, B. 1995. An acetohydroxy acid synthase mutant reveals a single site involved in multiple herbicide resistance. Mol. Gen. Genet 246:419425.Google Scholar
Heap, I. 2005. International Survey of Herbicide-Resistant Weeds. www.weedscience.com.Google Scholar
Heap, I. and Knight, R. 1986. The occurrence of herbicide cross-resistance in a population of annual ryegrass, Lolium rigidum, resistant to diclfop-methyl. Aust. J. Agric. Res 37:149156.Google Scholar
Heap, I. M. and Morrison, I. N. 1992. Resistance to auxin-type herbicides in wild mustard (Sinapis arvensis L.) populations in western Canada. Weed Sci. Soc. Am. Abstract 32:55.Google Scholar
Jander, G., Baerson, S. R., Hudak, J. A., Gonzalez, K. A., Gruys, K. J., and Last, R. L. 2003. Ethylmethanesulfonate saturation mutagenesis in Arabidopsis to determine frequency of herbicide resistance. Plant Physiol 131:139146.Google Scholar
Jeffers, G. M., O'Donovan, J. T., and Hall, L. M. 1996. Wild mustard (Brassica kaber) resistance to ethametsulfuron but not to other herbicides. Weed Technol 10:847850.Google Scholar
Koutsoyiannis, A. 1977. Theory of Econometrics (Second edition). London, Great: Britain: MacMillan Education. 699 p.CrossRefGoogle Scholar
Kvalseth, T. O. 1985. Cautionary note about R 2 . Am. Stat 39:279285.Google Scholar
Leeson, J. Y., Thomas, A. G., Andrews, T., Brown, K. R., and Van Acker, R. C. 2002. Manitoba Weed Survey of Cereal and Oilseed Crops in 2002. Weed Survey Series Publ. 02–2. Saskatoon, Saskatchewan: Agriculture and Agri-Food Canada. 191 p.Google Scholar
Leeson, J. Y., Thomas, A. G., Beckie, H. J., Hall, L. M., Brenzil, C., Van Acker, R. C., Brown, K. R., and Andrews, T. 2004. Group 2 herbicide use in the Prairie Provinces. Proc. Can. Weed Sci. Soc. In press.Google Scholar
Leeson, J. Y., Thomas, A. G., and Brenzil, C. A. 2003. Saskatchewan Weed Survey of Cereal, Oilseed and Pulse Crops in 2003. Weed Survey Series Publ. 03–1. Saskatoon, Saskatchewan: Agriculture and Agri-Food Canada. 342 p.Google Scholar
Mallory-Smith, C. A. and Retzinger, E. J. Jr. 2003. Revised classification of herbicides by site of action for weed resistance management strategies. Weed Technol 17:605619.Google Scholar
Mallory-Smith, C. A., Thill, D. C., and Dial, M. J. 1990. Identification of sulfonylurea herbicide-resistant prickly lettuce (Lactuca serriola). Weed Technol 4:163168.CrossRefGoogle Scholar
Meikle, A., Finch, R. P., McRoberts, N., and Marshall, G. 1999. A molecular genetic assessment of herbicide-resistant Sinapis arvensis . Weed Res 39:149158.Google Scholar
Milliman, L. D., Riechers, D. E., Wax, L. M., and Simmons, F. W. 2003. Characterization of two biotypes of imidazolinone-resistant eastern black nightshade (Solanum ptycanthum). Weed Sci 51:139144.Google Scholar
Morrison, I. N. and Devine, M. D. 1994. Herbicide resistance in the Canadian prairie provinces: five years after the fact. Phytoprotection 75:(Suppl.). 516.CrossRefGoogle Scholar
Patzoldt, W. L. and Tranel, P. J. 2001. ALS mutations conferring herbicide resistance in waterhemp. Proc. North Cent. Weed Sci. Soc 56:67.Google Scholar
Patzoldt, W. L. and Tranel, P. J. 2002. Molecular analysis of cloransulam resistance in a population of giant ragweed. Weed Sci 50:299305.CrossRefGoogle Scholar
Patzoldt, W. L., Tranel, P. J., Alexander, A. L., and Schmitzer, P. R. 2001. A common ragweed population resistant to cloransulam-methyl. Weed Sci 49:485490.Google Scholar
Preston, C. and Powles, S. B. 2002. Evolution of herbicide resistance in weeds: initial frequency of target site-based resistance to acetolactate synthase-inhibiting herbicides in Lolium rigidum . Heredity 88:813.Google Scholar
[SAS] Statistical Analysis Systems. 1999. SAS/STAT User's Guide. Version 8. Cary, NC: Statistical Analysis Systems Institute. 1243 p.Google Scholar
Sathasivan, K., Haughn, G. W., and Murai, N. 1990. Nucleotide sequence of a mutant acetolactate synthase gene from imidazolinone resistant Arabidopsis thaliana var. Columbia. Nucleic Acids Res 18:2188.Google Scholar
Scarabel, L., Carraro, N., Sattin, M., and Varotto, S. 2004. Molecular basis and genetic characterisation of evolved resistance to ALS-inhibitors in Papaver rhoeas . Plant Sci 166:703709.Google Scholar
Schmenk, R. E., Barrett, M., and Witt, W. E. 1997. An investigation of smooth pigweed (Amaranthus hybridus L.) resistance to acetolactate synthase inhibiting herbicides. Weed Sci. Soc. Am. Abstract 37:296.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose response relationships. Weed Technol 9:218227.Google Scholar
Sibony, M., Michel, A., Haas, H. U., Rubin, B., and Hurle, K. 2001. Sulfometuron-resistant Amaranthus retroflexus: cross-resistance and molecular basis for resistance to acetolactate synthase-inhibiting herbicides. Weed Res 41:509522.CrossRefGoogle Scholar
Sibony, M. and Rubin, B. 2003. Molecular basis for multiple resistance to acetolactate synthase inhibiting herbicides and atrazine in Amaranthus blitoides (prostrate pigweed). Planta 216:10221027.CrossRefGoogle ScholarPubMed
Steel, G. D. and Torrie, J. H. 1980. Principles and Procedures of Statistics: A Biometrical Approach (Second edition). New York: McGraw-Hill. 633 p.Google Scholar
Tan, M. K. and Medd, R. W. 2002. Characterisation of the acetolactate synthase (ALS) gene of Raphanus raphanistrum L. and the molecular assay of mutations associated with herbicide resistance. Plant Sci 163:195200.CrossRefGoogle Scholar
Tranel, P. J., Jiang, W., Patzoldt, W. L., and Wright, T. R. 2004. Intraspecific variability of the acetolactate synthase gene. Weed Sci 52:236241.Google Scholar
Tranel, P. J. and Wright, T. R. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci 50:700712.CrossRefGoogle Scholar
Veldhuis, L. J., Hall, L. M., O'Donovan, J. T., Dyer, W., and Hall, J. C. 2000. Metabolism-based resistance of a wild mustard (Sinapis arvensis L.) biotype to ethametsulfuron-methyl. J. Agric. Food Chem 48:29862990.CrossRefGoogle ScholarPubMed
Warwick, S. I., Beckie, H. J., Thomas, A. G., and McDonald, T. 2000. The biology of Canadian weeds. 8. Sinapis arvensis L. (updated). Can. J. Plant Sci 80:939961.Google Scholar
Woodworth, A. R., Bernasconi, P., Subramanian, M. V., and Rosen, B. A. 1996a. A second naturally occurring point mutation confers broad-based tolerance to acetolactate synthase inhibitors. Plant Physiol 111:S105.Google Scholar
Woodworth, A. R., Rosen, B. A., and Bernasconi, P. 1996b. Broad range resistance to herbicides targeting acetolactate synthase (ALS) in a field isolate of Amaranthus sp. is conferred by a Trp to Leu mutation in ALS gene (Accession No. U55852). Plant Physiol 111:1353.Google Scholar
Yu, Q., Zhang, X. Q., Hashem, A., Walsh, M. J., and Powles, S. B. 2003. ALS gene proline (197) mutations confer ALS herbicide resistance in eight separated wild radish (Raphanus raphanistrum) populations. Weed Sci 51:831838.Google Scholar