Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-06T14:06:02.734Z Has data issue: false hasContentIssue false

Seed biology of alkali barnyardgrass (Echinochloa crus-galli var. zelayensis) and junglerice (Echinochloa colona) for improved management in direct-seeded rice

Published online by Cambridge University Press:  21 February 2023

Zichang Zhang*
Affiliation:
Associate Professor, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, P. R. China
Hongchun Wang
Affiliation:
Associate Professor, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, P. R. China
Jingjing Cao
Affiliation:
Associate Professor, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, P. R. China
Gui Li
Affiliation:
Professor, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, P. R. China
Bhagirath Singh Chauhan*
Affiliation:
Professor, Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation (QAAFI), and School of Agriculture and Food Sciences (SAFS), University of Queensland, Gatton, Queensland, Australia
*
Authors for correspondence: Zichang Zhang, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street Xuanwu District Nanjing 210014, P.R. China. (Email: zichangzhang2009@163.com); Bhagirath Singh Chauhan, University of Queensland, Gatton, QLD 4343, Australia. (Email: b.chauhan@uq.edu.au)
Authors for correspondence: Zichang Zhang, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street Xuanwu District Nanjing 210014, P.R. China. (Email: zichangzhang2009@163.com); Bhagirath Singh Chauhan, University of Queensland, Gatton, QLD 4343, Australia. (Email: b.chauhan@uq.edu.au)

Abstract

Alkali barnyardgrass [Echinochloa crus-galli var. zelayensis (Kunth) Hitchc] and junglerice [Echinochloa colona (L.) Link] are problematic annual weeds in direct-seeded rice (Oryza sativa L.) fields in China. The emergence ecology of the two weed species may differ in response to environmental factors. Laboratory and screenhouse experiments were conducted to evaluate the effects of light, burial depth, mulching with wheat (Triticum aestivum L.) residue, and time and depth of flooding on the emergence of the two weed species collected from Nanjing, China. Light strongly increased seed germination. Under dark conditions, E. crus-galli seed germination (85%) was higher than that of E. colona (70%). The seeds of both species exhibited the greatest germination (90% for E. crus-galli and 80% for E. colona) when sown on the soil surface, and emergence decreased with increasing soil burial depth. Burial depths of 2.2 and 1.4 cm reduced seedling emergence by 50% for E. crus-galli and E. colona, respectively. No emergence was found at a depth of 6 cm. The seedling emergence for E. colona was lower than for E. crus-galli at the same soil burial depth. Mulching with wheat residue considerably reduced the seedling emergence and aboveground biomass of both species. The inhibitory effect of mulching with wheat residue on E. colona was more notable than on E. crus-galli. Early and deep flooding significantly suppressed the emergence, height, and biomass of E. crus-galli and E. colona, especially E. colona. The results gained from this study could provide fundamental ecological knowledge for managing Echinochloa species in direct-seeded rice systems.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of the Weed Science Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Carlene Chase, University of Florida

References

Awan, TH, Chauhan, BS (2016) Effect of emergence time, inter-and intra-specific competition on growth and fecundity of Echinochloa crus-galli in dry-seeded rice. Crop Prot 87:98107 CrossRefGoogle Scholar
Awan, TH, Cruz, PS, Chauhan, BS (2021) Influence of Echinochloa crus-galli density and emergence time on growth, productivity and critical period of competition with dry-seeded rice. Int J Pest Manag 67:113 CrossRefGoogle Scholar
Bablet, A, Vu, PVH, Jacquemoud, S, Viallefront, R, Fabre, S, Briottet, X, Sadeghi, M, Whiting, ML, Baret, F, Tian, J (2018) MARMIT: a multilayer radiative transfer model of soil reflectance to estimate surface soil moisture content in the solar domain (400–2500 nm). Remote Sens Environ 217:117 Google Scholar
Benvenuti, S (2003) Soil texture involvement in germination and emergence of buried weed seeds. Agron J 95:191198 CrossRefGoogle Scholar
Benvenuti, S, Mazzoncini, M (2019) Soil physics involvement in the germination ecology of buried weed seeds. Plants 8:7 CrossRefGoogle Scholar
Benvenuti, S, Pardossi, A (2017) Weed seedbank dynamics in Mediterranean organic horticulture. Sci Hortic 221:5361 CrossRefGoogle Scholar
Buhler, DD, Hartzler, RG, Forcella, F (1997) Implications of weed seed bank dynamics to weed management. Weed Sci 45:329336 CrossRefGoogle Scholar
Buhler, DD, Mester, TC, Kohler, KA (1996) The effect of maize residues and tillage on emergence of Setaria faberi, Abutilon theophrasti, Amaranthus retroflexus and Chenopodium album . Weed Res 36:153165 CrossRefGoogle Scholar
Chauhan, BS (2012) Weed ecology and weed management strategies for dry-seeded rice in Asia. Weed Technol 26:113 CrossRefGoogle Scholar
Chauhan, BS (2020) Grand challenges in weed management. Front Agron 1:3 CrossRefGoogle Scholar
Chauhan, BS (2021) Differential germination response of Navua sedge (Cyperus aromaticus) populations to environmental factors. Weed Sci 69:673680 CrossRefGoogle Scholar
Chauhan, BS, Abugho, SB (2014) Effect of crop residue on seedling emergence and growth of selected weed species in a sprinkler-irrigated zero-till dry-seeded rice system. Weed Sci 61:403409 CrossRefGoogle Scholar
Chauhan, BS, Johnson, DE (2008) Germination ecology of Chinese sprangletop (Leptochloa chinensis) in the Philippines. Weed Sci 56:820825 CrossRefGoogle Scholar
Chauhan, BS, Johnson, DE (2009a) Ecological studies on Cyperus difformis, C. iria and Fimbristylis miliacea: three troublesome annual sedge weeds of rice. Ann Appl Biol 155:103112 CrossRefGoogle Scholar
Chauhan, BS, Johnson, DE (2009b) Ludwigia hyssopifolia emergence and growth as affected by light, burial depth and water management. Crop Prot 28:887890 CrossRefGoogle Scholar
Chauhan, BS, Johnson, DE (2010a) Implications of narrow crop row spacing and delayed Echinochloa colona and Echinochloa crus-galli emergence for weed growth and crop yield loss in aerobic rice. Field Crops Res 117:177182 CrossRefGoogle Scholar
Chauhan, BS, Johnson, DE (2010b) The role of seed ecology in improving weed management strategies in the tropics. Adv Agron 105:221262 CrossRefGoogle Scholar
Chauhan, BS, Johnson, DE (2011) Ecological studies on Echinochloa crus-galli and the implications for weed management in direct-seeded rice. Crop Prot 30:13851391 CrossRefGoogle Scholar
Chauhan, BS, Mahajan, G, Sardana, V, Timsina, J, Jat, ML (2012a) Productivity and sustainability of the rice-wheat cropping system in the Indo-Gangetic Plains of the Indian subcontinent: problems, opportunities, and strategies. Adv Agron 117:315369 CrossRefGoogle Scholar
Chauhan, BS, Singh, RG, Mahajan, G (2012b) Ecology and management of weeds under conservation agriculture: a review. Crop Prot 38:5765 CrossRefGoogle Scholar
Chen, GQ, Tang, W, Li, J, Lu, YL, Dong, LY (2019) Distribution characteristics of Echinochloa species in rice fields in China: a case survey on 73 sites from nine provincial administrative regions. Chin J Rice Sci 33(4):368376. ChineseGoogle Scholar
Davis, AS (2007) Nitrogen fertilizer and crop residue effects on seed mortality and germination of eight annual weed species. Weed Sci 55:123128 CrossRefGoogle Scholar
Driver, KE, Al-Khatib, K, Godar, A (2020) Bearded sprangletop (Diplachne fusca ssp. fascicularis) flooding tolerance in California rice. Weed Technol 34:193196 CrossRefGoogle Scholar
Ehsan, A, Safdar, ME, Ali, A (2020) Estimation of economic thresholds of jungle rice (Echinochloa colona L.) and false amaranth (Digera arvensis forssk.) in direct seeded rice. Pak J Weed Sci Res 26:507524 CrossRefGoogle Scholar
Fan, MS, Liu, XJ, Jiang, RF, Zhang, FS, Lu, SH, Zeng, XZ, Christie, P (2005) Crop yields, internal nutrient efficiency, and changes in soil properties in rice-wheat rotations under non-flooded mulching cultivation. Plant Soil 277:265276 CrossRefGoogle Scholar
Forcella, F (1997) My view. Weed Sci 45:327 CrossRefGoogle Scholar
Gao, Y, Xu, JY, Qi, YL, He, SH, Li, J, Dong, LY (2021) Differences in ABA synthesis and oxidase stress between quinclorac-resistant and-sensitive Echinochloa crus-galli var. zelayensis . Int J Pest Manag 67:113 CrossRefGoogle Scholar
Ghosh, D, Rathore, M, Brahmachari, K, Singh, R, Kumar, B (2017) Impact of burial and flooding depths on Indian weedy rice. Crop Prot 100:106110 CrossRefGoogle Scholar
Grundy, AC, Mead, A, Burston, S (2003) Modelling the emergence response of weed seeds to burial depth: interactions with seed density, weight and shape. J Appl Ecol 40:757770 CrossRefGoogle Scholar
Holm, LG, Plucknett, DL, Pancho, JV, Herberger, JP (1991) The World’s Worst Weeds: Distribution and Biology. Honolulu: University Press of Hawaii. 609 pGoogle Scholar
Huang, S, Zeng, Y, Wu, J, Shi, Q, Pan, X (2013) Effect of crop residue retention on rice yield in China: a meta-analysis. Field Crops Res 154:188194 CrossRefGoogle Scholar
Li, YF, Zhang, ZC, Yang, X, Dong, MC, Zhang, B, Han, JY (2015) Susceptibility of weeds in Echinochloa to aryloxyphenoxypropionate herbicides and the mechanism. Jiangsu J Agric Sci 31:543551. ChineseGoogle Scholar
Liu, HY, Hussain, S, Zheng, MM, Peng, SB, Huang, JL, Cui, KH, Nie, LX (2015) Dry direct-seeded rice as an alternative to transplanted-flooded rice in central China. Agron Sustain Dev 35:285294 CrossRefGoogle Scholar
Macías, FA, Oliveros-Bastidas, A, Marín, D, Chinchilla, N, Castellano, D, Molinillo, JM (2014) Evidence for an allelopathic interaction between rye and wild oats. J Agric Food Chem 62:94509457 CrossRefGoogle ScholarPubMed
Mahajan, G, Chauhan, BS (2013) Herbicide options for weed control in dry-seeded aromatic rice in India. Weed Technol 27:682689 CrossRefGoogle Scholar
Mahajan, G, Prasad, A, Chauhan, BS (2021) Seed germination ecology of Sumatran fleabane (Conyza sumatrensis) in relations to various environmental parameters. Weed Sci 69:687694 CrossRefGoogle Scholar
Manpreet, S, Bhullar, MS, Chauhan, BS (2015) Seed bank dynamics and emergence pattern of weeds as affected by tillage systems in dry direct-seeded rice. Crop Prot 67:168177 Google Scholar
María, AA, Gabriel, JL, Irene, GG, Del, M, Quemada, M (2018) Weed density and diversity in a long-term cover crop experiment background. Crop Prot 112:103111 Google Scholar
Mhlanga, B (2016) Weed emergence as affected by maize (Zea mays L.)-cover crop rotations in contrasting arable soils of Zimbabwe under conservation agriculture. Crop Prot 81:4756 CrossRefGoogle Scholar
Milberg, P, Andersson, L, Noronha, A (1996) Seed germination after short duration light exposure: implications for the photo-control of weeds. J Appl Ecol 33:14691478 CrossRefGoogle Scholar
Miro, B, Ismail, AM (2013) Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (Oryza sativa L.). Front Plant Sci 4:269 CrossRefGoogle ScholarPubMed
Mohler, CL, Teasdale, JRT (1993) Response of weed emergence to rate of Vicia villosa Roth and Secale cereale L. residue. Weed Res 33:487499 CrossRefGoogle Scholar
Nie, L, Peng, S (2017) Rice production in China. Pages 3352 in Chauhan, B, Jabran, K, Mahajan, G, eds. Rice Production Worldwide. Cham, Switzerland: Springer CrossRefGoogle Scholar
Nikolić, N, Loddo, D, Masin, R (2021). Effect of crop residues on weed emergence. Agronomy 11:163 CrossRefGoogle Scholar
Prasad, BMBB (2012) Impact of varying densities of jungle rice on rice productivity. Indian J Weed Sci 44:4345 Google Scholar
Priya, TSR, Nelson, ARLE, Ravichandran, K, Antony, U (2019) Nutritional and functional properties of coloured rice varieties of South India: a review. J Ethn Foods 6:111 Google Scholar
Qian, Q, Guo, L, Smith, SM, Li, J (2016) Breeding high-yield superior quality hybrid super rice by rational design. Natl Sci Rev 3:283294 CrossRefGoogle Scholar
Ranaivoson, L, Naudin, K, Ripoche, A, Rabeharisoa, L, Corbeels, M (2018) Is mulching an efficient way to control weeds? Effects of type and amount of crop residue in rainfed rice based cropping systems in Madagascar. Field Crops Res 217:2031 CrossRefGoogle Scholar
Shekhawat, K, Rathore, SS, Chauhan, BS (2020) Weed management in dry direct-seeded rice: A review on challenges and opportunities for sustainable rice production. Agronomy 10:1264 CrossRefGoogle Scholar
Shi, X, Li, R, Zhang, Z, Qiang, S (2021) Microstructure determines floating ability of weed seeds. Pest Manag Sci 77:440454 CrossRefGoogle ScholarPubMed
Shivashenkaramurthy, M, Agasimani, AD, Roopa, SP, Praveen, T, Neeralagi, GA (2020) Mechanised paddy transplanted to combat labour scarcity in rain fed paddy cultivation in Malnad regions of Uttar Kannada district. J Pharmacogn Phytochem 9:18761880 Google Scholar
Sturm, DJ, Peteinatos, G, Gerhards, R (2018) Contribution of allelopathic effects to the overall weed suppression by different cover crops. Weed Res 58:331337 CrossRefGoogle Scholar
I STA (1996) International Seed Testing Association. Zurich, SwitzerlandGoogle Scholar
Wang, QY, Qiao, LY, Wei, JG, Dong, LY, Li, YH (2004). A study on tolerance to pretilachlor in eight species of Echinochloa . Rice Sci 11:331 Google Scholar
Xu, JY, Lv, B, Wang, Q, Li, J, Dong, LY (2013) A resistance mechanism dependent upon the inhibition of ethylene biosynthesis. Pest Manag Sci 69:14071414 CrossRefGoogle ScholarPubMed
Yao, N, Zhao, H, Li, Y, Biswas, A, Feng, H, Liu, F, Pulatov, B (2020) National-scale variation and propagation characteristics of meteorological, agricultural, and hydrological droughts in China. Remote Sens 12:3407 CrossRefGoogle Scholar
Zhang, ZC, Gu, T, Zhao, BH, Yang, X, Peng, Q, Li, YF, Bai, LY (2017) Effects of common Echinochloa varieties on grain yield and grain quality of rice. Field Crop Res 203:163172 CrossRefGoogle Scholar