Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-03T01:48:46.879Z Has data issue: false hasContentIssue false

Constraints in the Development of Bioherbicides

Published online by Cambridge University Press:  12 June 2017

Bruce A. Auld
Affiliation:
NSW Agriculture, Agricultural Research & Veterinary Centre, Forest Road, Orange 2800, Australia
Louise Morin
Affiliation:
Agriculture Canada, Research Station, PO Box 440, Regina, Saskatchewan SP4 3A2, Canada

Extract

Bioherbicides are biological control agents applied in similar ways to chemical herbicides to control weeds. The active ingredient in a bioherbicide is a living microorganism and it is applied in inundative doses of propagules. Most commonly the microorganism used is a fungus and its propagules are spores or fragments of mycelium; in this case the bioherbicide is also referred to as a mycoherbicide.

Commercial bioherbicides first appeared on the market in the USA in the early 1980s with the release of the product DeVine® in 1981 and in the next year, the release of the product Collego®. In spite of considerable public research effort and many promising candidate organisms, only one other bioherbicide product, BioMal®, has been registered (in Canada) since then. Furthermore none of these products are currently commercially available for a variety of reasons that will be discussed below.

Type
Review
Copyright
Copyright © 1995 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Abbasher, A. A. and Sauerborn, J. 1992. Fusarium nygamai, a potential bioherbicide for Striga hermonthica control in sorghum. Biol. Control 2:291296.CrossRefGoogle Scholar
2. Adcock, T. E. and Banks, P. A. 1991. Effects of preemergence herbicides on the competitiveness of selected weeds. Weed Sci. 39:5456.CrossRefGoogle Scholar
3. Altman, J., Neate, S., and Rovira, A. D. 1990. Herbicide-pathogen interactions and mycoherbicides as alternative strategies for weed control. p. 240259 in Hoagland, R. E., ed. Microbes and Microbial Products as Herbicides, ACS Symp. Ser. 439. American Chemical Society, Washington, DC.CrossRefGoogle Scholar
4. Amsellem, Z., Sharon, A., and Gressel, J. 1991. Abolition of selectivity of two mycoherbicidal organisms and enhanced virulence of avirulent fungi by an invert emulsion. Phytopathology 81:985988.CrossRefGoogle Scholar
5. Amsellem, Z., Sharon, A., Gressel, J., and Quimby, P. C. Jr. 1990. Complete abolition of high inoculum threshold of two mycoherbicides (Alternaria cassiae and A. crassa) when applied in invert emulsion. Phytopathology 80:925929.CrossRefGoogle Scholar
6. Andrews, J. H. 1992. Biological control in the phyllosphere. Annu. Rev. Phytopathol. 30:603635.CrossRefGoogle ScholarPubMed
7. Auld, B. A. 1991. Economic aspects of biological weed control with plant pathogens. p. 262274 in TeBeest, D. O., ed. Microbial Control of Weeds. Chapman and Hall Inc., New York.CrossRefGoogle Scholar
8. Auld, B. A. 1993. Vegetable oil suspension emulsions reduce dew dependence of a mycoherbicide. Crop Prot. 12:477479.CrossRefGoogle Scholar
9. Auld, B. A. 1993. Potential for bioherbicides in developing countries. p. 8183 (Vol. 1) in Proc. 10th Aust. and 14th Asian-Pacific Weed Conf., Brisbane.Google Scholar
10. Auld, B. A. 1993. Mass production of fungi for biopesticides. Plant Prot. Q. 8:719.Google Scholar
11. Auld, B. A., McRae, C. F., and Say, M. M. 1988. Possible control of Xanthiurn spinosum by a fungus. Agric. Ecosys. Environ. 21:219223.CrossRefGoogle Scholar
12. Auld, B. A., Say, M. M., and Millar, G. D. 1990. Influence of potential stress factors on anthracnose development on Xanthium spinosum . J. Appl. Ecol. 27:513519.CrossRefGoogle Scholar
13. Auld, B. A., Say, M. M., Ridings, H. I., and Andrews, J. 1990. Field applications of Colletotrichum orbiculare to control Xanthium spinosum . Agric. Ecosys. Environ. 32:315323.CrossRefGoogle Scholar
14. Auld, B. A., Talbot, H. E., and Radburn, K. B. 1992. Host range of three isolates of Alternaria zinniae, a potential biocontrol agent for Xanthium sp. Plant Prot. Q. 7:114116.Google Scholar
15. Bals, E. J. 1984. Where have all the droplets gone? p. 8185 (Vol. 2) in Madin, R. W., ed. Proc. Seventh Aust. Weeds Conf., Perth. Google Scholar
16. Bannon, J. S. 1988. CASST™ herbicide (Alternaria cassiae): a case history of a mycoherbicide. Am. J. Alternative Agric. 3:7376.CrossRefGoogle Scholar
17. Bannon, J. S., White, J. C., Long, D., Riley, J. A., Baragona, J., Atkins, M., and Crowley, R. H. 1990. Bioherbicide technology: an industrial perspective. p. 305319 in Hoagland, R. E., ed. Microbes and Microbial Products as Herbicides, ACS Symp. Ser. 439. American Chemical Society, Washington, DC.CrossRefGoogle Scholar
18. Beier, R. C. 1990. Natural pesticides and bioactive components in foods. p. 47125 in Ware, G. W., ed. Reviews of Environmental Contamination and Toxicology. Vol. 113. Springer-Verlag, Inc., New York.CrossRefGoogle Scholar
19. Bewick, T. A., Binning, L. K., Stevenson, W. R., and Stewart, J. 1987. A mycoherbicide for control of swamp dodder (Cuscuta gronovii Willd.). p. 93104 in Weber, H. Chr. and Forstreuter, W., eds. Parasitic Flowering Plants. Proc. 4th Int. Symp. Parasitic Flowering Plants, Marburg.Google Scholar
20. Blakeman, J. P. 1992. Fungal interaction on plant surfaces. p. 853867 in Carroll, C. G. and Wicklow, D. T., eds. The Fungal Community, its Organization and Role in the Ecosystem, 2nd edition. Marcel Dekker Inc., New York.Google Scholar
21. Bousfield, I. J. 1988. Patent protection for biotechnological inventions. p. 115161 in Hawksworth, D. L. and Kirsop, B. E., eds. Living Resources for Biotechnology, Filamentous Fungi. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
22. Bowers, R. C. 1982. Commercialization of microbial biological control agents. p. 157173 in Charudattan, R. and Walker, H. L., eds. Biological Control of Weeds with Plant Pathogens. John Wiley and Sons Inc., New York.Google Scholar
23. Bowers, R. C. 1986. Commercialization of Collego™—an industrialist's view. Weed Sci. 34(Suppl. 1):2425.CrossRefGoogle Scholar
24. Boyetchko, S. M. and Mortensen, K. 1993. Rhizobacteria as biocontrol agents of downy brome. p. 67 (Abstract) in Proc. Sixth Int. Congr. Plant Pathol., Montreal. Google Scholar
25. Boyette, C. D. 1991. Host range and virulence of Colletotrichum truncatum. a potential mycoherbicide for hemp sesbania (Sesbania exaltata). Plant Dis. 75:6264.CrossRefGoogle Scholar
26. Boyette, C. D., Abbas, H. K., and Connick, W. J. Jr. 1993. Evaluation of Fusarium oxysporum as a potential bioherbicide for sicklepod (Cassia obtusifolia), coffee senna (C. occidentalis), and hemp sesbania (Sesbania exaltata). Weed Sci. 41:678681.CrossRefGoogle Scholar
27. Boyette, C. D., Quimby, P. C. Jr., Bryson, C. T., Egley, G. H., and Fulgham, F. E. 1993. Biological control of hemp sesbania (Sesbania exaltata) under field conditions with Colletotrichum truncatum formulated in an invert emulsion. Weed Sci. 41:497500.CrossRefGoogle Scholar
28. Boyette, C. D., Quimby, P. C. Jr., Connick, W. J. Jr., Daigle, D. J., and Fulgham, F. E. 1991. Progress in the production, formulation and application of mycoherbicides. p. 209224 in TeBeest, D. O., ed. Microbial Control of Weeds. Chapman and Hall Inc., New York.CrossRefGoogle Scholar
29. Boyette, C. D., Templeton, G. E., and Oliver, L. R. 1984. Texas gourd (Cucurbita texana) control with Fusarium solani f.sp. cucurbitae . Weed Sci. 32:649657.CrossRefGoogle Scholar
30. Boyette, C. D., Templeton, G. E., and Smith, R. J. Jr. 1979. Control of winged waterprimrose (Jussiaea decurrens) and northern jointvetch (Aeschynomene virginica) with fungal pathogens. Weed Sci. 27:497501.CrossRefGoogle Scholar
31. Boyette, C. D. and Walker, H. L. 1985. Factors influencing biocontrol of velvetleaf (Abutilon theophrasti) and prickly sida (Sida spinosa) with Fusarium lateritium . Weed Sci. 33:209211.CrossRefGoogle Scholar
32. Boyette, C. D. and Walker, H. L. 1986. Evaluation of Fusarium lateritium as a biological herbicide for controlling velvetleaf (Abutilon theophrasti) and prickly sida (Sida spinosa). Weed Sci. 34:106109.CrossRefGoogle Scholar
33. Brosten, B. S. and Sands, D. C. 1986. Field trials of Sclerotinia sclerotiorum to control Canada thistle (Cirsium arvense). Weed Sci. 34:377380.CrossRefGoogle Scholar
34. Brown, C. V. and Jackson, P. M. 1990. Public Sector Economics. 4th Ed. Basil Blackwell, Oxford. 622 p.Google Scholar
35. Bruzzese, E. and Hasan, S. 1986. Host specificity of the rust Phragmidium violaceum, a potential biological control agent of European blackberry. Ann. Appl. Biol. 108:585596.CrossRefGoogle Scholar
36. Burdon, J. J. 1987. Diseases and Plant Population Biology. Cambridge University Press, Cambridge. 208 p.Google Scholar
37. Burdon, J. J., Groves, R. H., and Cullen, J. M. 1981. The impact of biological control on the distribution and abundance of Chondrilla juncea in southeastern Australia. J. Appl. Ecol. 18:957966.CrossRefGoogle Scholar
38. Cerkauskas, R. F. 1988. Latent colonization by Colletotrichum spp.: Epidemiological considerations and implications for mycoherbicides. Can. J. Plant Pathol. 10:297310.CrossRefGoogle Scholar
39. Charudattan, R. 1982. Regulation of microbial weed control agents. p. 175188 in Charudattan, R. and Walker, H. L., eds. Biological Control of Weeds with Plant Pathogens. John Wiley and Sons Inc., New York.Google Scholar
40. Charudattan, R. 1985. The use of natural and genetically altered strains of pathogens for weed control. p. 347372 in Hoy, M. A. and Herzog, D. C., eds. Biological Control in Agricultural IPM Systems. Academic Press Inc., Orlando, FL.CrossRefGoogle Scholar
41. Charudattan, R. 1986. Integrated control of waterhyacinth with a pathogen, insects and herbicides. Weed Sci. 34(Suppl. 1):2630.CrossRefGoogle Scholar
42. Charudattan, R. 1988. Inundative control of weeds with indigenous fungal pathogens. p. 86110 in Burge, M. N., ed. Fungi in Biological Control Systems. Manchester University Press, Manchester.Google Scholar
43. Charudattan, R. 1989. Assessment of efficacy of mycoherbicide candidates. p. 455464 in Delfosse, E. S., ed. Proc. Seventh Int. Symp. on Biological Control of Weeds, Instituto Sperimentale per la Patologia Vegetale, Ministero dell' Agricoltura e delle Foreste, Rome.Google Scholar
44. Charudattan, R. 1990. Pathogens with potential for weed control. p. 132154 in Hoagland, R. E., ed. Microbes and Microbial Products as Herbicides, ACS Symp. Ser. 439. American Chemical Society, Washington, DC.CrossRefGoogle Scholar
45. Charudattan, R. 1991. The mycoherbicide approach with plant pathogens. p. 2457 in TeBeest, D. O., ed. Microbial Control of Weeds. Chapman and Hall Inc., New York.CrossRefGoogle Scholar
46. Charudattan, R. 1993. The role of pesticides in altering biocontrol efficacy. p. 421432 in Altman, J., ed. Pesticide Interaction in Crop Production: Beneficial and Deleterious Effects. CRC Press Inc., Boca Raton, FL.Google Scholar
47. Charudattan, R. and Browning, H. W., eds. 1992. Regulations and Guidelines: Critical Issues in Biological Control. Proc. USDA/CSRS National Workshop, Vienna, VA. Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL.Google Scholar
48. Charudattan, R., DeValerio, J. T., and Prange, V. J. 1990. Special problems associated with aquatic weed control. p. 287303 in Baker, R. R. and Dunn, P. E., eds. New Directions in Biological Control: Alternatives for Suppressing Agricultural Pests and Diseases. Alan R. Liss Inc., New York.Google Scholar
49. Charudattan, R., Freeman, T. E., Cullen, R. E., and Hofmeister, F. M. 1981. Evaluation of Fusarium roseum “Culmorum” as a biological control agent for Hydrilla verticillata: Safety. p. 307323 in Delfosse, E. S., ed. Proc. Fifth Int. Symp. Biological Control of Weeds, Brisbane. CSIRO, Melbourne.Google Scholar
50. Charudattan, R., Linda, S. B., Klupfel, M., and Osman, Y. A. 1985. Biocontrol efficacy of Cercospora rodmanii on waterhyacinth. Phytopathology 75:12631269.CrossRefGoogle Scholar
51. Christy, A. L., Herbst, K. A., Kostka, S. J., Mullen, J. P., and Carlson, P. S. 1993. Synergizing weed biocontrol agents with chemical herbicides. p. 87100 in Duke, S. O., Menn, J. J., and Plimmer, J. R., eds. Pest Control with Enhanced Environmental Safety, ACS Symp. Ser. 524. American Chemical Society, Washington, DC.CrossRefGoogle Scholar
52. Churchill, B. W. 1982. Mass production of microorganisms for biological control. p. 139156 in Charudattan, R. and Walker, H. L., eds. Biological Control of Weeds with Plant Pathogens. John Wiley and Sons Inc., New York.Google Scholar
53. Clifford, D. R., Gendle, P., and Holgate, M. E. 1987. Gel formulations for the treatment of pruning wounds I. Carbendazim and triadimefon in sodium alginate. Ann. Appl. Biol. 110:489500.CrossRefGoogle Scholar
54. Combellack, J. H. 1981. An assessment of the problems of efficiently spraying herbicides onto weeds in cropped areas. p. 9397 (Vol. 1) in Swarbrick, J. T. and Wilson, B. J., eds. Proc. Sixth Aust. Weeds Conf., Gold Coast, Queensland.Google Scholar
55. Combellack, J. H. 1989. The importance of weeds and the advantages and disadvantages of herbicide use. Plant Prot. Q. 4:1432.Google Scholar
56. Connick, W. J. Jr., Boyette, C. D., and McAlpine, J. R. 1991. Formulation of mycoherbicides using a pasta-like process. Biol. Control 1:281287.CrossRefGoogle Scholar
57. Connick, W. J. Jr., Daigle, D. J., and Quimby, P. C. Jr. 1991. An improved invert emulsion with high water retention for mycoherbicide delivery. Weed Technol. 5:442444.CrossRefGoogle Scholar
58. Connick, W. J. Jr., Lewis, J. A., and Quimby, P. C. Jr. 1990. Formulation of biocontrol agents for use in plant pathology. p. 345372 in Baker, R. R. and Dunn, P. E., eds. New Directions in Biological Control: Alternatives for Suppressing Agricultural Pests and Diseases. Alan R. Liss Inc., New York.Google Scholar
59. Cunningham, J. E. and Kuiack, C. 1989. Esterase activity as a marker for sporulation in Colletotrichum gloeosporioides f.sp. malvae in submerged culture. Mycol. Res. 93:236239.CrossRefGoogle Scholar
60. Daigle, D. J. and Connick, W. J. Jr. 1990. Formulation and application technology for microbial weed control. p. 288304 in Hoagland, R. E., ed. Microbes and Microbial Products as Herbicides, ACS Symp. Ser. 439. American Chemical Society, Washington, DC.CrossRefGoogle Scholar
61. Daigle, D. J., Connick, W. J. Jr., Quimby, P. C. Jr., Evans, J., Trask-Morrell, B., and Fulgham, F. E. 1990. Invert emulsions: carrier and water source for the mycoherbicide, Alternaria cassiae . Weed Technol. 4:327331.CrossRefGoogle Scholar
62. Daigle, D. J. and Cotty, P. J. 1991. Factors that influence germination and mycoherbicidal activity of Alternaria cassiae . Weed Technol. 5:8286.CrossRefGoogle Scholar
63. Daigle, D. J. and Cotty, P. J. 1992. Production of conidia of Alternaria cassiae with alginate pellets. Biol. Control 2:278281.CrossRefGoogle Scholar
64. De Jong, M. D., Scheepens, P. C., and Zadoks, J. C. 1990. Risk analysis for biological control: a Dutch case study in biocontrol of Prunus serotina by the fungus Chondrostereum purpureum . Plant Dis. 74:189194.CrossRefGoogle Scholar
65. De Nooij, M. P. and Paul, N. D. 1992. Invasion of rust (Puccinia poarum) pycnia and aecia on coltsfoot (Tussilago farfara) by secondary pathogens: death of host leaves. Mycol. Res. 96:309312.CrossRefGoogle Scholar
66. Deverall, B. J. 1977. Defense Mechanisms of Plants. Cambridge University Press, Cambridge. 110 p.CrossRefGoogle Scholar
67. Dickman, M. B., Podila, G. K., and Kolattukudy, P. E. 1989. Insertion of cutinase gene into a wound pathogen enables it to infect intact host. Nature 342:446448.CrossRefGoogle Scholar
68. Dik, A. J. 1991. Interactions among fungicides, pathogens, yeasts, and nutrients in the phyllosphere. p. 412429 in Andrews, J. H. and Hirano, S. S., eds. Microbial Ecology of Leaves. Springer-Verlag, Inc., New York.CrossRefGoogle Scholar
69. Doelle, H. W., Olguin, E. J., and Prasertsan, P. 1987. Fermentation technology and its impact on culture and society. p. 209225 in DaSilva, E. J., Dommergues, Y. R., Nyns, E. J., and Ratledge, C., eds. Microbial Technology in the Developing World. Oxford University Press, Oxford.Google Scholar
70. Elad, Y., Ayish, N., Ziv, O., and Katan, J. 1990. Control of grey mould (Botrytis cinerea) with film-forming polymers. Plant Pathol. 39:249254.CrossRefGoogle Scholar
71. Ellison, C.A. 1992. Mycoherbicidal control of Rottboellia cochinchinensis: a viable alternative? Plant Prot. Q. 7:163165.Google Scholar
72. Feichtenberger, E., Zentmyer, G. A., and Menge, J. A. 1984. Identity of Phytophthora isolated from milkweed vine. Phytopathology 74:5055.CrossRefGoogle Scholar
73. Fernando, W. G. D., Watson, A. K., and Paulitz, T. C. 1993. Phylloplane Pseudomonas spp. enhance disease caused by Colletotrichum coccodes on velvetleaf. Biol. Control 4:125131.CrossRefGoogle Scholar
74. Flynn, L. T. 1988. Pesticides: Helpful or harmful? The American Council on Science and Health, New York.Google Scholar
75. Gohbara, M. and Yamaguchi, K. 1992. Biological control agents for rice paddy weed management in Japan. p. 353366 in Proc. Int. Symp. Biol. Control and Integrated Manage. of Paddy and Aquatic Weeds in Asia, National Agriculture Research Centre, Tsukuba.Google Scholar
76. Greaves, M. P., Bailey, J. A., and Hargreaves, J. A. 1989. Mycoherbicides: Opportunities for genetic manipulation. Pestic. Sci. 26:93101.CrossRefGoogle Scholar
77. Greaves, M. P. and MacQueen, M. D. 1992. Bioherbicides: their role in tomorrow's agriculture. p. 295306 in Denholm, I., Devonshire, A. L., and Hollomon, D. W., eds. Resistance '91, Achievements and Developments in Combating Pesticide Resistance. Elsevier Applied Science, London.CrossRefGoogle Scholar
78. Grover, R. 1991. Nature, transport and fate of airborne residues. p. 89117 in Grover, R. and Cessna, A. J., eds. Environmental Chemistry of Herbicides, Vol. 2. CRC Press Inc., Boca Raton, FL.Google Scholar
79. Grover, R., Kerr, L. A., Wallace, K., Yoshida, K., and Maybank, J. 1976. Residues of 2,4-D in air samples from Saskatchewan, 1966–1975. J. Environ. Sci. Health B11:331347.CrossRefGoogle Scholar
80. Haas, H. 1989. Danish experience in initiating and implementing a policy to reduce herbicide use. Plant Prot. Q. 4:3844.Google Scholar
81. Hallett, S. G. 1991. A Dual Pathogen Strategy for the Biological Control of Weeds. Ph.D. Thesis, University of Lancaster, Lancaster, U.K. 202 p.Google Scholar
82. Hallett, S. G. and Ayres, P. G. 1992. Invasion of rust (Puccinia lagenophorae) aecia on groundsel (Senecio vulgaris) by secondary pathogens: death of the host. Mycol. Res. 96:142144.CrossRefGoogle Scholar
83. Hallett, S. G., Paul, N. D., and Ayres, P. G. 1990. Botrytis cinerea kills groundsel (Senecio vulgaris) infected by rust (Puccinia lagenophorae). New Phytol. 114:105109.CrossRefGoogle ScholarPubMed
84. Hasan, S. P. G. and Ayres, P. G. 1990. Tansley Review no. 23. The control of weeds through fungi: principles and prospects. New Phytol. 115:201222.CrossRefGoogle Scholar
85. Heiny, D. K. and Templeton, G. E. 1993. Economic comparisons of mycoherbicides to conventional herbicides. p. 395408 in Altman, J., ed. Pesticide Interaction in Crop Production: Beneficial and Deleterious Effects. CRC Press Inc., Boca Raton, FL.Google Scholar
86. Hesseltine, C. W. 1986. Global significance of mycotoxins. p. 118 in Steyn, P. S. and Vleggaar, R., eds. Mycotoxins and Phycotoxins. Elsevier Science Publishers, Amsterdam.Google Scholar
87. Hildebrand, P. D. 1989. Surfactant-like characteristics and identity of bacteria associated with broccoli head rot in Atlantic Canada. Can. J. Plant Pathol. 11:205214.CrossRefGoogle Scholar
88. Hodgson, R. H., Wymore, L. A., Watson, A. K., Snyder, R. H., and Collette, A. 1988. Efficacy of Colletotrichum coccodes and thidiazuron for velvetleaf (Abutilon theophrasti) control in soybean (Glycine max). Weed Technol. 2:473480.CrossRefGoogle Scholar
89. Holcomb, G. E. 1982. Constraints on disease development. p. 6171 in Charudattan, R. and Walker, H. L., eds. Biological Control of Weeds with Plant Pathogens. John Wiley and Sons, New York.Google Scholar
90. Holmström-Ruddick, B. and Mortensen, K. 1995. Factor affecting pathogenicity of a benomyl-resistant mutant strain of Colletotrichum gloeosporioides f.sp. malvae . Mycological Res. (in press).CrossRefGoogle Scholar
91. Holt, J. S., Powles, S. B., and Holtum, J. A. M. 1993. Mechanisms and agronomic aspects of herbicide resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44:203229.CrossRefGoogle Scholar
92. Jackson, M. A. and Bothast, R. J. 1990. Carbon concentration and carbon-to-nitrogen ratio influence submerged culture conidiation by the potential bioherbicide Colletotrichum truncatum NRRL 13737. Appl. Environ. Microbiol. 56:34353438.CrossRefGoogle ScholarPubMed
93. Jackson, M. A. and Schisler, D. A. 1992. The composition and attributes of Colletotrichum truncatum spores are altered by the nutritional environment. Appl. Environ. Microbiol. 58:22602265.CrossRefGoogle ScholarPubMed
94. Jackson, M. A., Schisler, D. A., and Boyette, C. D. 1993. Microsclerotia: alternative infective propagules of the bioherbicide Colletotrichum truncatum . p. 322 (Abstract) in Proc. 93rd General Meeting of the American Society of Microbiology, Washington, DC.Google Scholar
95. Jones, R. W. and Hancock, J. G. 1990. Soilborne fungi for biological control of weeds. p. 276286 in Hoagland, R. E., ed. Microbes and Microbial Products as Herbicides, ACS Symp. Ser. 439. American Chemical Society, Washington, DC.CrossRefGoogle Scholar
96. Karjalainen, R. and Kittilä., S. 1992. DNA-transformation technology of phytopathogenic fungi and its applications. Norwegian J. Agric. Sci. 7:99109.Google Scholar
97. Katan, J. and Eshel, Y. 1973. Interactions between herbicides and plant pathogens. Residue Rev. 45:145177.CrossRefGoogle Scholar
98. Kenerley, C. M. and Andrews, J. H. 1990. Interactions of pathogens on plant leaf surfaces. p. 192217 in Hoagland, R. E., ed. Microbes and Microbial Products as Herbicides, ACS Symp. Ser. 439. American Chemical Society, Washington, DC.CrossRefGoogle Scholar
99. Kennedy, A. C., Elliott, L. F., Young, F. L., and Douglas, C. L. 1991. Rhizobacteria suppressive to the weed downy brome. Soil Sci. Soc. Am. J. 55:722727.CrossRefGoogle Scholar
100. Kenney, D. S. 1986. DeVine®—the way it was developed—an industrialist's view. Weed Sci. 34(Suppl. 1):1516.CrossRefGoogle Scholar
101. Kistler, H. C. 1991. Genetic manipulation of plant pathogenic fungi. p. 152–17Q in TeBeest, D. O., ed. Microbial Control of Weeds. Chapman and Hall Inc., New York.Google Scholar
102. Kremer, R. J. 1993. Management of weed seed banks with microorganisms. Ecol. Applic. 3:4252.CrossRefGoogle ScholarPubMed
103. Laycock, M. V., Hildebrand, P. D., Thibault, P., Walter, J. A., and Wright, J.L.C. 1991. Viscosin, a potent peptidolipid biosurfactant and phytopathogenic mediator produced by a pectolytic strain of Pseudomonas fluorescens . J. Agric. Food Chem. 39:483489.CrossRefGoogle Scholar
104. LeBaron, H. M. 1990. Weed science in the 1990s: will it be forward or in reverse? Weed Technol. 4:671689.CrossRefGoogle Scholar
105. Levesque, C. A. and Rahe, J. E. 1992. Herbicide interactions with fungal root pathogens, with special reference to glyphosate. Annu. Rev. Phytopathol. 30:579602.CrossRefGoogle ScholarPubMed
106. Linke, K-H., Scheibel, C., Saxena, M. C., and Sauerborn, J. 1992. Fungi occurring on Orobanche spp. and their preliminary evaluation for Orobanche control. Trop. Pest Manage. 38:127130.CrossRefGoogle Scholar
107. Lym, R. G. and Messersmith, C. G. 1988. Survey for picloram in North Dakota groundwater. Weed Technol. 2:217222.CrossRefGoogle Scholar
108. Makowski, R.M.D. 1992. Regulating microbial pest control agents in Canada: the first mycoherbicide. p. XXXX (in press) in Delfosse, E. S. and Scott, R. R., eds. Proc. Eighth Int. Symp. on Biological Control of Weeds. DSIR / CSIRO, Melbourne, Victoria.Google Scholar
109. Makowski, R.M.D. 1993. Effect of inoculum concentration, temperature, dew period, and plant growth stage on disease of round-leaved mallow and velvetleaf by Colletotrichum gloeosporioides f.sp. malvae . Phytopathology 83:12291234.CrossRefGoogle Scholar
110. Makowski, R.M.D. 1993. Foliar pathogens in weed biocontrol: ecological and regulatory constraints. p. XXXX (in press) in Andow, D. A., Ragsdale, D. W., and Nyvall, R. F., eds. Ecological Interactions and Biological Control. Westview Press, Boulder, CO.Google Scholar
111. Makowski, R.M.D. and Mortensen, K. 1992. The first mycoherbicide in Canada: Colletotrichum gloeosporioides f.sp. malvae for round-leaved mallow control. p. 298300 in Richardson, R. G., ed. Proc. First Int. Weed Control Congr. Vol. 2. Weed Science Society of Victoria Inc., Melbourne, Victoria.Google Scholar
112. Marrs, R. H., Frost, A. J., Plant, R. A., and Lunnis, P. 1993. Effect of herbicides on vegetation. p. 2830 in Cooke, A. S., ed. The Environmental Effects of Pesticide Drift. English Nature, Peterborough.Google Scholar
113. McCullagh, P. 1980. Regression models for ordinal data. J. R. Stat. Soc. B. 42:109142.Google Scholar
114. McElwee, M., Irvine, J., and Burge, M. N. 1989. A mycoherbicidal approach to bracken control. p. 7579 in Bassett, C., Whitehouse, L., and Zabkiewicz, J. A., eds. Alternatives to the Chemical Control of Weeds. Proc. International Conference, Rotorua. Ministry of Forestry, FRI Bull. 155.Google Scholar
115. McRae, C. F. and Auld, B. A. 1988. The influence of environmental factors on anthracnose of Xanthium spinosum . Phytopathology 78:11821186.CrossRefGoogle Scholar
116. McRae, C. F., Ridings, H. I., and Auld, B. A. 1988. Anthracnose of Xanthium spinosum—qualitative disease assessment and analysis. Aust. J. Plant Pathol. 17:1113.CrossRefGoogle Scholar
117. McRae, C. F. and Stevens, G. R. 1990. Role of conidial matrix of Colletotrichum orbiculare in pathogenesis of Xanthium spinosum . Mycol. Res. 94:890896.CrossRefGoogle Scholar
118. Medd, R. W. and Pandey, S. 1993. Compelling grounds for controlling seed production in Avena species (wild oats). p. 769776 in Proc. Eighth Eur. Weed Res. Soc. Symp., Braunschweig.Google Scholar
119. Miller, R. V., Ford, E. J., and Sands, D. C. 1989. A nonsclerotial pathogenic mutant of Sclerotinia sclerotiorum . Can. J. Microbiol. 35:517520.CrossRefGoogle Scholar
120. Miller, R. V., Ford, E. J., Zidack, N. J., and Sands, D. C. 1989. A pyrimidine auxotroph of Sclerotinia sclerotiorum for use in biological weed control. J. General Microbiol. 135:20852091.Google Scholar
121. Miller, R. V. and Sands, D. C. 1992. Fitness of genetically altered fungi. p. 99118 in Carroll, G. C. and Wicklow, D. T., eds. The Fungal Community, its Organization and Role in the Ecosystem, 2nd edition. Marcel Dekker Inc., New York.Google Scholar
122. Mintz, A. S., Heiny, D. K., and Weidemann, G. J. 1992. Factors influencing the biocontrol of tumble pigweed (Amaranthus albus) with Aposphaeria amaranthi . Plant Dis. 76:267269.CrossRefGoogle Scholar
123. Misaghi, I. J. 1982. Physiology and Biochemistry of Plant-Pathogen Interactions. Plenum Press, New York, p. 287.CrossRefGoogle Scholar
124. Morin, L. 1992. Mass-production of fungi for bioherbicides. Plant Prot. Q. 7:143148.Google Scholar
125. Morin, L., Auld, B. A., and Brown, J. F. 1993. Interactions between Puccinia xanthii and facultative parasitic fungi on Xanthium occidentale . Biol. Control 3:288295.CrossRefGoogle Scholar
126. Morin, L., Auld, B. A., and Brown, J. F. 1993. Synergy between Puccinia xanthii and Colletotrichum orbiculare on Xanthium occidentale . Biol. Control 3:296310.CrossRefGoogle Scholar
127. Morin, L., Auld, B. A., Brown, J. F., and Cholil, M. A. 1994. Pathogenic fungi occurring on the Noogoora burr complex in Australia. Proc. Linn. Soc. N.S.W. 114:133147.Google Scholar
128. Morin, L., Watson, A. K., and Reeleder, R. D. 1989. Efficacy of Phomopsis convolvulus for control of field bindweed (Convolvulus arvensis). Weed Sci. 37:830835.CrossRefGoogle Scholar
129. Morin, L., Watson, A. K., and Reeleder, R. D. 1990. Effect of dew, inoculum density, and spray additives on infection of field bindweed by Phomopsis convolvulus . Can. J. Plant Pathol. 12:4856.CrossRefGoogle Scholar
130. Morin, L., Watson, A. K., and Reeleder, R. D. 1990. Production of conidia by Phomopsis convolvulus . Can. J. Microbiol. 36:8691.CrossRefGoogle Scholar
131. Morris, M. J. 1989. A method for controlling Hakea sericea Schrad. seedlings using the fungus Colletotrichum gloeosporioides (Penz.) Sacc. Weed Res. 29:449454.CrossRefGoogle Scholar
132. Morris, M. J. 1991. The use of plant pathogens for biological weed control in South Africa. Agric. Ecosys. Environ. 37:239255.CrossRefGoogle Scholar
133. Moss, S. R. and Rubin, B. 1993. Herbicide-resistant weeds: a worldwide perspective. J. Agric. Sci. 120:141148.CrossRefGoogle Scholar
134. Musgrave, R. A. 1959. The Theory of Public Finance: a study in public economy. McGraw-Hill, New York. 628 p.Google Scholar
135. Nikandrow, A., Weidemann, G. J., and Auld, B. A. 1990. Incidence and pathogenicity of Colletotrichum orbiculare and a Phomopsis sp. on Xanthium sp. Plant Dis. 74:796799.CrossRefGoogle Scholar
136. Osteen, C. D. and Szmedra, P. I. 1989. Agricultural Pesticide Use Trends and Policy Issues. USDA, ERS, Agric. Econ. Rep. No. 622.Google Scholar
137. Parsons, J. M., (ed.) 1992. Australian Weed Control Handbook. 9th Edition. Inkata Press, Melbourne. 510 p.Google Scholar
138. Paul, N. D., Ayres, P. G., and Hallett, S. G. 1992. Making biological herbicides more effective. J. Biol. Educ. 26:9499.CrossRefGoogle Scholar
139. Paul, N. D., Ayres, P. G., and Hallett, S. G. 1993. Mycoherbicides and other biocontrol agents for Senecio spp. Pestic. Sci. 37:323329.CrossRefGoogle Scholar
140. Pennisi, E. 1992. Sealed in edible film. Science News 141:1213.CrossRefGoogle Scholar
141. Pimental, D. and Levitan, L. 1986. Pesticides: Amount applied and amounts reaching pests. Bioscience 36:8691.CrossRefGoogle Scholar
142. Powell, K. A. and Jutsum, A. R. 1993. Technical and commercial aspects of biocontrol products. Pestic. Sci. 37:315321.CrossRefGoogle Scholar
143. Quimby, P. C. Jr., Fulgham, F. E., Boyette, C. D., and Connick, W. J. Jr. 1988. An invert emulsion replaces dew in biocontrol of sicklepod—a preliminary study. p. 264270 in Hovde, D. A. and Beestman, G. B., eds. Pesticide Formulations and Application Systems, Vol. 8. ASTM-STP 980. American Society for Testing and Materials. Philadelphia.Google Scholar
144. Rambosek, J. and Leach, J. 1987. Recombinant DNA in filamentous fungi: progress and prospects. CRC Critical Reviews in Biotechnology 6:357393.CrossRefGoogle ScholarPubMed
145. Raunkiaer, C. 1934. Life Forms of Plants and Statistical Plant Geography. Clarendon Press, Oxford. 632 p.Google Scholar
146. Riddle, G. E., Burpee, L. L., and Boland, G. J. 1991. Virulence of Sclerotinia sclerotiorum and S. minor on dandelion (Taraxacum officinale). Weed Sci. 39:109118.CrossRefGoogle Scholar
147. Robinson, E. and Fox, L. L. 1978. 2,4-D herbicides in Central Washington. Air Pollution Control Assoc. J. 28:10151020.CrossRefGoogle Scholar
148. Rodriguez, R. J. and Redman, R. S. 1992. Molecular transformation and genome analysis of Colletotrichum . p. 4766 in Bailey, J. A. and Jeger, M. J., eds. Colletotrichum: Biology, Pathology and Control. British Society for Plant Pathology, C.A.B. International, Wallingford.Google Scholar
149. Saliwanchik, R. 1986. Patenting/licensing of microbial herbicides. Weed Sci. 34(Suppl. 1):4349.CrossRefGoogle Scholar
150. Saliwanchik, R. 1988. Protecting Biotechnology Inventions: A Guide for Scientists. Science Tech Publishers, Madison, WI. 175 p.Google Scholar
151. Sands, D. C., Ford, E. J., and Miller, R. V. 1990. Genetic manipulation of broad host-range fungi for biological control of weeds. Weed Technol. 4:471474.CrossRefGoogle Scholar
152. Sands, D. C. and Miller, R. V. 1993. Altering the host range of mycoherbicides by genetic manipulation. p. 101109 in Duke, S. O., Menn, J. J., and Plimmer, J. R., eds. Pest Control with Enhanced Environmental Safety, ACS Symp. Ser. 524. American Chemical Society, Washington, DC.CrossRefGoogle Scholar
153. Savage, S. 1993. Biological control of Poa annua ssp. annua (annual bluegrass) with a novel pathovar of Xanthomonas campestris . p. 107 in Abstr. Proc. XV Int. Bot. Congr., Yokohama.Google Scholar
154. Scheepens, P. C. 1987. Joint action of Cochliobolus lunatus and atrazine on Echinochloa crus-galli (L.) Beauv. Weed Res. 27:4347.CrossRefGoogle Scholar
155. Scheepens, P. C. and Hoogerbrugge, A. 1989. Control of Prunus serotina in forests with the endemic fungus Chondrostereum purpureum . p. 545551 in Delfosse, E. S., ed. Proc. Seventh Int. Symp. Biol. Control of Weeds. Istituto Sperimentale per la Patologia Vegetale, Ministero dell' Agricoltura e delle Foreste, Rome.Google Scholar
156. Schisler, D. A., Howard, K. M., and Bothast, R. J. 1991. Enhancement of disease caused by Colletotrichum truncatum in Sesbania exaltata by coinoculating with epiphytic bacteria. Biol. Control 1:261268.CrossRefGoogle Scholar
157. Schisler, D. A., Jackson, M. A., and Bothast, R. J. 1991. Influence of nutrition during conidiation of Colletotrichum truncatum on conidial germination and efficacy in inciting disease in Sesbania exaltata . Phytopathology 81:587590.CrossRefGoogle Scholar
158. Schoenewiess, D. F. 1975. Predisposition, stress, and plant disease. Annu. Rev. Phytopathol. 13:193211.CrossRefGoogle Scholar
159. Sharon, A., Amsellem, Z., and Gressel, J. 1992. Glyphosate suppression of an elicited defense response. Plant Physiol. 98:654659.CrossRefGoogle ScholarPubMed
160. Shivas, R. G., Allen, J. G., Edgar, J. A., Cockrum, P. A., Gallagher, P. F., Ellis, P. F., and Harvey, M. 1994. Production of Phomopsin A by Phomopsis emicis . p. 161166 in Colegate, S. M. and Dopling, P. R., eds. Plant Associated Toxins: Agricultural, Phytochemical and Ecological Aspects. CAB International, Wallingford, U.K. Google Scholar
161. Simmonds, B., and Brosten, D. 1989. Microbial herbicide registrations lag. Agrichemical Age 33(10):89, 18–19.Google Scholar
162. Smith, A. E. 1982. Herbicides and the soil environment in Canada. Can. J. Soil Sci. 62:433460.CrossRefGoogle Scholar
163. Sparace, S. A., Wymore, L. A., Menassa, R., and Watson, A.K. 1991. Effects of the Phomopsis convolvulus conidial matrix on conidia germination and the leaf anthracnose disease of field bindweed (Convolvulus arvensis). Plant Dis. 75:11751179.CrossRefGoogle Scholar
164. Stowell, L. J. 1991. Submerged fermentation of biological herbicides. p. 225261 in TeBeest, D. O., ed. Microbial Control of Weeds. Chapman and Hall Inc., New York.CrossRefGoogle Scholar
165. Stowell, L. J., Nette, K., Heath, B., and Shutter, R. 1989. Fermentation alternatives for commercial production of a mycoherbicide. p. 219227 in Demain, A. L., Somkuti, G. A., Hunter-Cevera, J. C., and Rossmoore, H. W., eds. Novel Microbial Products for Medicine and Agriculture. Society for industrial Microbiology, Elsevier, Amsterdam.Google Scholar
166. TeBeest, D. O. 1984. Induction of tolerance to benomyl in Colletotrichum gloeosporioides f.sp. aeschynomene by ethyl methanesulfonate. Phytopathology 74:864.Google Scholar
167. TeBeest, D. O. 1991. Ecology and epidemiology of fungal plant pathogens studied as biological control agents of weeds. p. 97114 in TeBeest, D. O., ed. Microbial Control of Weeds. Chapman and Hall Inc., New York.CrossRefGoogle Scholar
168. TeBeest, D. O., Cisar, C. R., and Spiegel, F. W. 1992. Partial characterization of progeny from a cross between Colletotrichum gloeosporioides f.sp. aeschynomene and C. gloeosporioides from Carya . Plant Prot. Q. 7:171.Google Scholar
169. TeBeest, D. O., Yang, X. B., and Cisar, C. R. 1992. The status of biological control of weeds with fungal pathogens. Annu. Rev. Phytopathol. 30:637657.CrossRefGoogle Scholar
170. Templeton, G. E. 1982. Biological herbicides: discovery, development and deployment. Weed Sci. 30:430433.CrossRefGoogle Scholar
171. Templeton, G. E. 1982. Status of weed control with plant pathogens. p. 2944 in Charudattan, R. and Walker, H. L., eds. Biological Control of Weeds with Plant Pathogens. John Wiley and Sons Inc., New York.Google Scholar
172. Templeton, G. E. 1986. Mycoherbicide research at the University of Arkansas – past, present and future. Weed Sci. 34(Suppl. 1):3537.CrossRefGoogle Scholar
173. Templeton, G. E. 1990. Weed control with pathogens: future needs and directions. p. 320329 in Hoagland, R. E., ed. Microbes and Microbial Products as Herbicides, ACS Symposium Series 439. American Chemical Society, Washington, DC.CrossRefGoogle Scholar
174. Templeton, G. E. 1992. Some “orphaned” mycoherbicides and their potential for development. Plant Prot. Q. 7:149150.Google Scholar
175. Templeton, G. E. 1992. Use of Colletotrichum strains as mycoherbicides. p. 358380 in Bailey, J. A. and Jeger, M. J., eds. Colletotrichum: Biology, Pathology and Control. British Society for Plant Pathology, C.A.B. International, Wallingford.Google Scholar
176. Templeton, G. E. and Heiny, D. K. 1989. Improvement of fungi to enhance mycoherbicide potential. p. 127151 in Whipps, J. M. and Lunsden, R. D., eds. Biotechnology of Fungi for Improving Plant Growth. British Mycological Society, Cambridge University Press, Cambridge.Google Scholar
177. Tukey, H. B. 1970. The leaching of substances from plants. Annu. Rev. Plant Physiol. 21:305324.CrossRefGoogle Scholar
178. Turgeon, G. and Yoder, O. C. 1985. Genetically engineered fungi for weed control. p. 221230 in Cheremisinoff, R. P., Ouellette, R. P., and Bartholome, R. W., eds. Biotechnology: Applications and Research. Technomic Pub., Lancaster.Google Scholar
179. Vanderplank, J. E. 1960. Analysis of epidemics. p. 229289 in Horsfall, J. G. and Dimond, A. E., eds. Plant Pathology: An Advanced Treatise. Vol. 3. The Diseased Population: Epidemics and Control. Acadmic Press, New York.Google Scholar
180. Vanderplank, J. E. 1975. Principles of Plant Infection. Academic Press, New York. 216 p.Google Scholar
181. van Elsas, J. D. and Trevors, J. T. 1991. Environmental risks and fate of genetically engineered microorganisms in soil. J. Environ. Sci. Health. A26:9811001.Google Scholar
182. Walker, H. L. 1981. Granular formulation of Alternaria macrospora for control of spurred anoda (Anoda cristata). Weed Sci. 29:342345.CrossRefGoogle Scholar
183. Walker, H. L. and Connick, W. J. Jr. 1983. Sodium alginate for production and formulation of mycoherbicides. Weed Sci. 31:333338.CrossRefGoogle Scholar
184. Walker, H. L. and Sciumbato, G. L. 1981. Host range studies on four Alternaria isolates pathogenic to cotton (Gossypium spp.) or spurred anoda (Anoda cristata). Plant Sci. Lett. 22:7175.CrossRefGoogle Scholar
185. Walker, J., Nikandrow, A., and Millar, G. D. 1991. Species of Colletotrichum on Xanthium (Asteraceae) with comments on some taxonomic and nomenclatural problems in Colletotrichum . Mycol. Res. 95:11751193.CrossRefGoogle Scholar
186. Wall, R. E. 1990. The fungus Chondrostereum purpureum as a silvicide to control stump sprouting in hardwoods. North. J. Appl. Forestry 7:1719.CrossRefGoogle Scholar
187. Wang, R. 1989. Biological control of weeds in China: a status report. p. 689693 in Delfosse, E. S., ed. Proc. Seventh Int. Symp. Biolog. Control of Weeds. Istituto Sperimentale per la Patologia Vegetale, Ministero dell' Agricoltura e delle Foreste, Rome.Google Scholar
188. Watson, A. K. 1985. Host specificity of plant pathogens in biological weed control. p. 577586 in Delfosse, E. S., ed. Proc. Sixth Int. Symp. Biolog. Control of Weeds. Agriculture Canada, Vancouver, B.C. Google Scholar
189. Weaver, S. E. 1991. Size-dependent economic thresholds for three broadleaf weed species in soybeans. Weed Technol. 5:674679.CrossRefGoogle Scholar
190. Weidemann, G. J. 1988. Effects of nutritional amendments on conidial production of Fusarium solani f.sp. cucurbitae on sodium alginate granules and on control of Texas gourd. Plant Dis. 72:757759.CrossRefGoogle Scholar
191. Weidemann, G. J. 1991. Host-range testing: safety and science. p. 8396 in TeBeest, D. O., ed. Microbial Control of Weeds. Chapman and Hall Inc., New York.CrossRefGoogle Scholar
192. Weidemann, G. J. 1992. Risk assessment: determining genetic relatedness and potential asexual gene exchange in biocontrol fungi. Plant Prot. Q. 7:166168.Google Scholar
193. Weidemann, G. J. and TeBeest, D. O. 1990. Genetic variability of fungal pathogens and their weed hosts. p. 176183 in Hoagland, R. E., ed. Microbes and Microbial Products as Herbicides, ACS Symp. Ser. 439. American Chemical Society, Washington, DC.CrossRefGoogle Scholar
194. Weidemann, G. J. and Templeton, G. E. 1988. Control of Texas gourd, Curcurbita texana, with Fusarium solani f.sp. cucurbitae . Weed Technol. 2:271274.CrossRefGoogle Scholar
195. Wilson, C. L. 1965. Consideration of the use of persimmon wilt as a silvicide for weed persimmons. Plant Dis. Reporter 49:789791.Google Scholar
196. Wilson, C. L. 1969. Use of plant pathogens in weed control. Annu. Rev. Phytopathol. 7:411434.CrossRefGoogle Scholar
197. Windels, C. E. and Lindow, S. E., eds. 1985. Biological Control on the Phylloplane. American Phytopathological Society, St. Paul, MN.Google Scholar
198. Winder, R. S. and Shamoun, S. F. 1991. Terminology in microbial control of weeds. Biol. Control 1:399.CrossRefGoogle Scholar
199. Womack, J. G. and Burge, M. N. 1993. Mycoherbicide formulation and the potential for bracken control. Pestic. Sci. 37:337341.CrossRefGoogle Scholar
200. Wymore, L. A., Poirier, C., Watson, A. K., and Gotlieb, A. R. 1988. Colletotrichum coccodes, a potential bioherbicide for control of velvetleaf (Abutilon theophrasti). Plant Dis. 72:534538.CrossRefGoogle Scholar
201. Wymore, L. A. and Watson, A. K. 1986. An adjuvant increases survival and efficacy of Colletotrichum coccodes, a mycoherbicide for velvetleaf (Abutilon theophrasti). Phytopathology 76:11151116.Google Scholar
202. Wymore, L. A. and Watson, A. K., 1989. Interaction between a velvetleaf isolate of Colletotrichum coccodes and thidiazuron for velvetleaf (Abutilon theophrasti) control in the field. Weed Sci. 37:478483.CrossRefGoogle Scholar
203. Wymore, L. A., Watson, A. K., and Gotlieb, A. R. 1987. Interaction between Colletotrichum coccodes and thidiazuron for control of velvetleaf (Abutilon theophrasti). Weed Sci. 35:377383.CrossRefGoogle Scholar
204. Yang, S. M., Johnson, D. R., Dowler, W. M., and Connick, W. J. Jr. 1993. Infection of leafy spurge by Alternaria alternata and A. angustiovoidea in the absence of dew. Phytopathology 83:953958.CrossRefGoogle Scholar
205. Yang, X. B. and TeBeest, D. O. 1993. Epidemiological mechanisms of mycoherbicide effectiveness. Phytopathology 83:891893.Google Scholar
206. Yoder, O. C., Turgeon, B. G., Ciuffetti, L. M., and Schafer, W. 1989. Genetic analysis of toxin production by fungi. p. 4360 in Graniti, A., Durbin, R. D., and Ballio, A., eds. Phytotoxins and Plant Pathogenesis. Springer-Verlag, Inc., Berlin.CrossRefGoogle Scholar
207. Zorner, P. S., Evans, S. L., and Savage, S. D. 1993. Perspectives on providing a realistic technical foundation for the commercialization of bioherbicides. p. 7986 in Duke, S. O., Menn, J. J., and Plimmer, J. R., eds. Pest Control with Enhanced Environmental Safety, ACS Symp. Ser. 524. American Chemical Society, Washington, DC.CrossRefGoogle Scholar