Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-18T17:01:10.529Z Has data issue: false hasContentIssue false

Perspectives on Glyphosate Resistance

Published online by Cambridge University Press:  12 June 2017

Laura D. Bradshaw
Affiliation:
Monsanto Company, 800 N. Lindbergh Blvd. St. Louis, MO 63167
Stephen R. Padgette
Affiliation:
Monsanto Company, 800 N. Lindbergh Blvd. St. Louis, MO 63167
Steven L. Kimball
Affiliation:
Monsanto Company, 800 N. Lindbergh Blvd. St. Louis, MO 63167
Barbara H. Wells
Affiliation:
Monsanto Company, 800 N. Lindbergh Blvd. St. Louis, MO 63167

Abstract

The lack of evolution of weed resistance to the herbicide glyphosate has been considered from several perspectives. Few plant species are inherently resistant to glyphosate. Furthermore, the long history of extensive use of the herbicide has resulted in no verified instances of weeds evolving resistance under field situations. Unique properties of glyphosate such as its mode of action, metabolism, chemical structure and lack of residual activity in soil may explain this observation. Selection for glyphosate resistance of crops using intense whole plant and cell/tissue culture techniques, including mutagenesis, has had only limited success and is unlikely to be duplicated under normal field conditions. Information obtained in the development of glyphosate-resistant crops suggests that target-site alterations that decrease the herbicidal activity of glyphosate also may lead to reduced survival of a weed. In addition, the complex manipulations that were required for the development of glyphosate-resistant crops are unlikely to be duplicated in nature to evolve glyphosate-resistant weeds.

Type
Mini-Review/Commentary
Copyright
Copyright © 1997 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Amrhein, N., Deus, B., Gehrke, P., and Steinrücken, H. C. 1980. The site of the inhibition of the shikimate pathway by glyphosate, Plant Physiol. 65:830834.CrossRefGoogle Scholar
Amrhein, N., Hollander-Czytko, H., Johanning, D., Schulz, A., Smart, C. C., and Steinrücken, H. C. 1987. Overproduction of 5-enolypyruvyl-shikimate-3-phosphate synthase in glyphosate-tolerant plant cell cultures. p. 119133 in Liss, Alan R., pub. Plant Tissue and Cell Culture. New York.Google Scholar
Anderson, K. S., and Johnson, K. A. 1990. Kinetic and structural analysis of enzyme intermediates: lessons from EPSP synthase. Chem. Rev. 90:11311149.CrossRefGoogle Scholar
Anderson, K. S., Sikorski, J. A., and Johnson, K. A. 1988. Evaluation of 5-enolpyruvylshikimate-3-phosphate synthase substrate and inhibitor binding by stopped-flow and equilibrium fluorescence measurements. Biochemistry 27:16041610.CrossRefGoogle ScholarPubMed
Barry, G., Kishore, G., Padgette, S., Taylor, M., Kolacz, K., Weldon, M., Re, D., Eichholtz, D., Fincher, K., and Hallas, L. 1992. p. 139145 in Singh, B. K., Flores, H. E., and Shannon, J. C., eds. Biosynthesis and Molecular Recognition of Amino Acids in Plants. Am. Soc. Plant Physiol. Rockville, MD.Google Scholar
Bently, R., 1990. The shikimate pathway-A metabolic tree with many branches. p. 307384 in Fasman, G. D., ed. Critical Reviews in Biochemistry and Molecular Biology, v. 25. CRC Press, Boca Raton, FL.Google Scholar
Boerboom, C. M., Wyse, D. L., and Somers, D. A. 1990. Mechanism of glyphosate tolerance in birdsfoot trefoil (Lotus corniculatus). Weed Sci. 38:463467.CrossRefGoogle Scholar
Boocock, M. R., and Coggins, J. R. 1983. Kinetics of 5-enolpyruvylshikimate-3-phosphate synthase inhibition by glyphosate. Fed. Eur. Biochem. Soc. Lett. 154:127133.CrossRefGoogle ScholarPubMed
Burnet, M.W.M., Hildebrand, O. B., Holtum, J.A.M., and Powles, S. B. 1991. Amitrole, triazine, substituted urea, and metribuzin resistance in a biotype of rigid ryegrass (Lolium rigidum). Weed Sci. 39:317323.CrossRefGoogle Scholar
Carlisle, S. M., and Trevors, J. T. 1988. Glyphoste in the environment. Water, Air Soil Pollut. 39:409420.CrossRefGoogle Scholar
Comai, L., Sen, L., and Stalker, D. M. 1983. An altered aroA gene product confers resistance to the herbicide glyphosate. Science 221:370371.CrossRefGoogle Scholar
Comai, L. D., Facciotti, D., Hiatt, W. R., Thompson, G., Rose, R. E., and Stalker, D. M. 1985. Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate. Nature 317:741744.CrossRefGoogle Scholar
Conard, S. G., and Radosevich, S. R. 1979. Ecological fitness of Senecio vulgaris and Amman/hits retroflexus biotypes susceptible or resistant to atrazine. J. Appl. Ecol. 16:171177.CrossRefGoogle Scholar
Cotterman, J. C., and Saari, L. L. 1992. Rapid metabolic inactivation is the basis for cross-resistance to chlorsulfuron in diclofop-methyl-resistant rigid ryegrass (Lolium rigidum) biotype sr4/84. Pestic. Biochem. Physiol. 43:182192.CrossRefGoogle Scholar
Coupland, D., 1985. Metabolism of glyphosate in plants. p. 2534 in Grossbard, E., and Atkinson, D., eds. The Herbicide Glyphosate. Butterworth and Company, Ltd., London.Google Scholar
DeGennaro, F. P., and Weller, S. C. 1984. Differential susceptibility of field bindweed (Convolvulus arvensis) biotypes to glyphosate. Weed Sci. 32:472476.CrossRefGoogle Scholar
della-Cioppa, G., Bauer, S. C., Klein, B. K., Shah, D. M., Fraley, R. T., and Kishore, G. 1986. Translocation of the precursor of 5-enolpyruvylshikimate-3-phosphate synthase into chloroplasts of higher plants in vitro . Proc. Natl. Acad. Sci. USA. 83:68736877.CrossRefGoogle Scholar
della-Cioppa, G., and Kishore, G. M. 1988. Import of a precursor protein into chloroplasts is inhibited by the herbicide glyphosate. Eur. Mol. Biol. Organ. J. 7:12991305.CrossRefGoogle ScholarPubMed
Duke, S.O., 1988. Glyphosate. p. 3:1–70 in Kearney, P. C. and Kaufman, D. D., eds. Herbicides: Chemistry, Degradation and Mode of Action. Dekker, New York.Google Scholar
Duke, S. O., Christy, A. L., Hess, F. D., and Holt, J. S. 1991. Herbicide-resistant crops. Comments From Counc. Agric. Sci. Technol. p. 128.Google Scholar
Duncan, C. N., and Weller, S. C. 1987. Heritability of glyphosate susceptibility among biotypes of field bindweed. J. of Heed. 78:257260.Google Scholar
Dyer, W. E., 1994. Resistance to glyphosate. p. 229241 in Powles, S. B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants. CRC Press, Boca Raton, FL.Google Scholar
Fillatti, J. J., Kiser, J., Rose, R., and Comai, L. 1987. Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector. Bio-Technology 5:726730.Google Scholar
Fraley, R. T., Kishore, G., Gasser, C. S., Padgette, S., Horsch, R., Rogers, S., della-Cioppa, G., and Shah, D. 1987. Genetically-engineered herbicide tolerance-technical and commercial considerations. Proc. Br. Crop Prot. Conf. 463471.Google Scholar
Franz, J. E., Mao, J. K., and Sikorski, J. A. 1993. Glyphosate's molecular mode of action: A review of glyphosate and EPSPS biochemistry. Am. Chem. Soc. Monogr. 13:187.Google Scholar
Fuerst, E. P., and Vaughn, K. C. 1990. Mechanism of paraquat resistance. Weed Technol. 4:150156.CrossRefGoogle Scholar
Goodman, R. M., 1987. Future potential, problems, and practicalities of herbicide-tolerant crops from genetic engineering. Weed Sci. 35 (Suppl. 1):2831.CrossRefGoogle Scholar
Gossett, B. J., Murdock, E. C., and Toler, J. E. 1992. Dinitroaniline-resistant Palmer amaranth (Amaranthus palmeri). Proc. South. Weed Sci. Soc. 45:90.Google Scholar
Gressel, J., 1993. Evolution of herbicide resistance in weeds: causes, prevention. and ameliorative management. p. 173188 in Malik, R. K., ed. Integrated Weed Management for Sustainable Agriuclture, v. 1. Proc. Int. Symp. Indian Society of Weed Science, Hisar.Google Scholar
Gressel, J., 1992. Genetically-engineered herbicide-resistant crops-a moral imperative for world food production. Agro-Food-Industry Hi-Tech. Nov–Dec:37.Google Scholar
Gressel, J., and Segel, L. S. 1990. Modelling the effectiveness of herbicide rotations and mixtures as strategies to delay or preclude resistance. Weed Technol. 4:186198.CrossRefGoogle Scholar
Gronwald, J. W., Anderson, R. N., and Yee, C. 1989. Atrazine resistance in velvetleaf (Abutilon threophrasti) due to enhanced atrazine detoxification. Pestic. Biochem. Physiol. 34:149163.CrossRefGoogle Scholar
Grossbard, E., and Atkinson, D. 1985. The Herbicide Glyphosate. Butterworth and Company, Ltd., London. 490 p.Google Scholar
Gruys, K. J., Walker, M. C., and Sikorski, J. A. 1992. Substrate synergism and the steady-state kinetic reaction mechanism for EPSP synthase from E. coli . Biochemistry 31:55345544.CrossRefGoogle Scholar
Gruys, K. J., Marzabadi, M. R., Pansegrau, P. D., and Sikorski, J. A. 1993. Steady-state kinetic evaluation of the reverse reaction for Escherichia coli 5-enolpyruvylshikimate-3-phosphate synthase. Arch. Biochem. Biophys. 304:345351.CrossRefGoogle Scholar
Hallas, L. E., Hahn, E. M., and Korndorfer, C. 1988. Characterization of microbial traits associated with glyphosate biodegradation in industrial activated sludge. J. Industrial Microbiol. 3:377385.CrossRefGoogle Scholar
Harper, J. L., 1956. The evolution of weeds in relation to the resistance to herbicides. Proc. 3rd Br. Weed Control Conf. 1:179188.Google Scholar
Hartnett, M. E., Chui, C. F., Mauvais, C. J., McDevitt, R. E., Knowlton, S., Smith, J. K., Falco, S. C., and Mazur, B. J. 1990. Herbicide-resistant plants carrying mutated acetolactate synthase genes. p. 459473 in Green, M. B., LeBaron, H. M., and Moberg, W. K., eds. Managing Resistance to Agrochemicals: From Fundamental Research to Practical Strategies. Am. Chem. Soc. Symp. Ser. No. 421, ACS Books, Washington, DC.CrossRefGoogle Scholar
Haughn, G. W., and Somerville, C. 1986. Sulfonylurea-resistant mutants of Arabidopsis thaliana . Mol. Gen. Genet. 204:430434.Google Scholar
Haughn, G., Smith, J., Mazur, B., and Somerville, C. R. 1988. An Arabidopsis acetolactate synthase gene in tobacco confers resistance to sulfonylurea herbicides. Mol. Gen. Genet. 211:266271.CrossRefGoogle Scholar
Haughn, G. W., and Somerville, C. R. 1990. A mutation causing imidazolinone resistance maps to the csr1 locus of Arabidopsis thaliana . Plant Physiol. 92:10811085.CrossRefGoogle Scholar
Haughn, G. W., and Somerville, C. R. 1987. Selection for herbicide resistance at the whole plant level. p. 98108 in Lebaron, H., Mumma, R. O., Honeycutt, R. C., and Duesing, J. H., eds. Applications of Biotechnology to Agricultural Chemistry. American Chemical Society, Washington, D.C. CrossRefGoogle Scholar
Heap, I. M., 1991. Resistance to herbicides in annual ryegrass (Lolium rigidum) in Australia. p. 5766 in Casely, J. C., Cussans, G. W., Atkins, R. K., eds. Herbicide Resistance in Weeds. Butterworth-Heinemann, Ltd., Oxford, U.K. CrossRefGoogle Scholar
Heap, I., and Knight, R. 1986. The occurrence of herbicide cross-resistance in a population of annual ryegrass, Lolium rigidum, resistant to the herbicide diclofop-methyl. Aust. J. Agric. Res. 37:149156.CrossRefGoogle Scholar
Hinchee, M. A., Connor-Ward, D. V., Newell, C. A., McDonnell, R. E., Sato, S. J., Gasser, C. S., Ficchoff, D. A., Re, D. B., Fraley, R. T., and Horsch, R. B. 1988. Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Bio-Technology 6:915921.Google Scholar
Hirschberg, J. A., Bleeker, A., Kyle, D. J., Mcintosh, L., and Arntzen, C. J. 1984. The molecular basis of triazine-herbicide resistance in higher-plant chloroplasts. Z. Naturforsch. 39c:412420.CrossRefGoogle Scholar
Holt, J. S. 1992. History of identification of herbicide-resistant weeds. Weed Technol. 6:615620.CrossRefGoogle Scholar
Holt, J. S., and LeBaron, H. M. 1990. Significance and distribution of herbicide resistance. Weed Technol. 4:141149.CrossRefGoogle Scholar
Holt, J. S., Powles, S. B., and Holtum, J.A.M. 1993. Mechanisms and agronomic aspects of herbicide resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44:203229.CrossRefGoogle Scholar
Holt, J. S., and Radosevich, S. R. 1983. Differential growth of two common groundsel (Senecio vulgaris) biotypes. Weed Sci. 31:112115.CrossRefGoogle Scholar
Horsch, R. B., Fraley, R. T., Rogers, S. G., Klee, H. J., Fry, J., W. Hinchee, M. A., and Shah, D. S. 1988. Agrobacterium-mediated gene transfer to plants; engineering tolerance to glyphosate. Iowa State J. Res. 62:487502.Google Scholar
Jacob, G. S., Garbow, J. R., Hallas, L. E., Kimack, N. M., Kishore, G. M., and Schaefer, J. 1988. Metabolism of glyphosate in Pseudomonas sp. strain LBr. Appl. Environ. Microbiol. 54:29532958.CrossRefGoogle ScholarPubMed
Johnston, D. T., Van Wijk, A.J.P., and Kilpatrick, D. 1989. Selection for tolerance to glyphosate in fine-leaved Festuca species. Proc. 6th Int. Turgrass Res. Conf. p. 103105.Google Scholar
Johnston, D. T., and Faulkner, J. S. 1991. Herbicide resistance in the Graminaceae—A plant breeder's view. p. 319330 in Caseley, J. C., Cussans, G. W. and Atkin, R. K., eds. Herbicide Resistant Weeds and Crops. Butterworth-Heinemann Ltd., Oxford, U.K. CrossRefGoogle Scholar
Kishore, G. M., and Shah, D. M. 1988. Amino acid biosynthesis inhibitors as herbicides. Annu. Rev. Biochem. 57:627663.CrossRefGoogle ScholarPubMed
Kishore, G. M., Brundage, L., Kolk, K., Padgette, S. R., Rochester, D., Huynh, Q. K., and della-Cioppa, G. 1986. Isolation, purification, and characterization of a glyphosate-tolerant mutant E. coli EPSP synthase. Proc. Fed. Am. Soc. Exp. Biol. 45:1506.Google Scholar
Komoba, D., Gennity, I., and Sandermann, H. 1992. Plant metabolism of herbicides with C-P bonds: glyphosate. Pestic. Biochem. Physiol. 43:8594.Google Scholar
LeBaron, H. M., and Gressel, J. 1982. Herbicide Resistance in Plants. John Wiley and Sons, Inc., New York. 401 p.Google Scholar
LeBaron, H. M., 1991. Distribution and seriousness of herbicide resistant weed infestations worldwide. p. 1513 in Caseley, J. C., Cussans, G. W., and Atkins, R. K., eds. Herbicide Resistance in Weeds and Crops. Butterworth-Heinemann Ltd., Oxford, U.K. Google Scholar
Lee, K. Y., Townsend, J., Tepperman, J., Black, M., Chui, C. F., Mazur, B., Dunsmuir, P., and Bedbrook, J. 1988. The molecular basis of sulfonylurea herbicide resistance in tobacco. Eur. Mol. Biol. Organ. J. 7:12411248.CrossRefGoogle ScholarPubMed
Loux, M. M., Liebl, R. A., and Hymowitz, T. 1987. Examination of wild perennial Glycine species for glyphosate tolerance. Soybean Genet. Newsl. 14:268271.Google Scholar
Malik, J., Barry, G., and Kishore, G. 1989. The herbicide glyphosate. BioFactors 2(1):1725.Google ScholarPubMed
Mallory-Smith, C. A., Thill, D. C., and Dial, M. J. 1990. Identification of sulfonylurea herbicide-resistant prickly lettuce (Lactuca serriola). Weed Technol. 4:163168.CrossRefGoogle Scholar
Marshall, G., Kirkwood, R. C. and Martin, D. J. 1987. Studies on the mode of action of asulam, aminotriazole and glyphosate in Equisetum arvense L. II. The metabolism of [14C]asulam, [14C]aminotriazole and [14C]glyphosate. Pestic. Sci. 18:6577.CrossRefGoogle Scholar
Moss, S. R., 1990. Herbicide resistance in slender foxtail (Alopecurus myosuroides). Weed Sci. 38:492–196.CrossRefGoogle Scholar
Moss, S. R., and Rubin, B. 1993. Herbicide-resistant weeds: a worldwide perspective. J. Agric. Sci. 120:141148.CrossRefGoogle Scholar
Mousdale, P. M., and Coggins, J. R. 1985. Subcellular localization of the common shikimate pathway enzymes in Pisum sativum . Planta 163:241249.CrossRefGoogle ScholarPubMed
Nafziger, E. M., Wildholm, J. M., Steinrücken, H. C., and Killmer, J. L. 1984. Selection and characterization of a carrot cell line tolerant to glyphosate. Plant Physiol. 76:571574.CrossRefGoogle ScholarPubMed
Nomura, N. S., and Hilton, H. W. 1977. The adsorption and degradation of glyphosate in five Hawaiian sugarcane soils. Weed Res. 17:113121.CrossRefGoogle Scholar
Padgette, S. R., Re, D. B., Barry, G. F., Eichholtz, D. E., Delannay, X., Fuchs, R. L., Kishore, G. M., and Fraley, R. T. 1996. New weed control opportunities: Development of soybeans with a Roundup Ready™ gene. p. 5384 in Duke, S. O., ed. Herbicide-Resistant Crops: Agricultural, Economic, Environmental, Regulatory, and Technological Aspects. CRC Press, Boca Raton, FL.Google Scholar
Padgette, S. R., della-Cioppa, G., Shah, D. M., Fraley, R. T., and Kishore, G. M. 1989. Selective herbicide tolerance through protein engineering. p. 441476 in Schell, J. and Vasil, I., eds. Cell Culture and Somatic Cell Genetics of Plants, Vol. 6. Academic Press, New York.Google Scholar
Padgette, S. R., Re, D. B., Gasser, C. S., Eichholtz, D. A., Frazier, R. B., Hironaka, C. M., Levine, E. B., Shah, D. M., Fraley, R. T., and Kishore, G. M. 1991. Site-directed mutagenesis of a conserved region of the 5-enolpyruvylshikimate-3-phosphate synthase active site. J. Biol. Chem. 266:2236422369.CrossRefGoogle ScholarPubMed
Pfister, K., and Arntzen, C.J. 1979. The mode of action of photosystem H-specific inhibitors in herbicide-resistant weed biotypes. Z. Naturforsch. 34c:9961009.CrossRefGoogle Scholar
Pipke, R., and Amrhein, N. 1988. Degradation of the phosphonate herbicide glyphosate by Arthrobacter atrocyaneus ATCC 13752. Appl. Environ. Microbiol. 54:12931296.CrossRefGoogle ScholarPubMed
Powles, S. B., and Howat, P. D. 1990. Herbicide-resistant weeds in Australia. Weed Technol. 4:178185.CrossRefGoogle Scholar
Powles, S. B., Tucker, E. S., and Morgan, T. R. 1989. A capeweed (Arctotheca calendula) biotype in Australia resistant to bipyridyl herbicides. Weed Sci. 37:6062.CrossRefGoogle Scholar
Pratley, J., Baines, B., Eberbach, P., Incerti, M., and Broster, J. 1996. Glyphosate resistance in annual ryegrass. Proc. Eleventh Ann. Conf. Grassld. Soc. NSW. 122.Google Scholar
Primiani, M. M., Cotterman, J. C., and Saari, L. L. 1990. Resistance of kochia (Kochia scoparia) to sulfonylurea and imidazolinone herbicides. Weed Technol. 4:169172.CrossRefGoogle Scholar
Radosevich, S. R., and Holt, J. S. 1982. Physiological responses and fitness in susceptible and resistant weed biotypes to triazine herbicides. p. 163183 in LeBaron, J. M. and Gressel, J., eds. Herbicide Resistance in Plants. John Wiley and Sons, Inc., New York.Google Scholar
Re, D. B., Padgette, S. R., Delannay, X., Kolacz, K. H., Nida, D. L., Peschke, V. M., Derting, C. W., Rogers, S. G., Edwards, J. W., Barry, G. F., and Biest, N. A. 1993, Petition of Determination of Nonregulated Status: Soybeans with a Roundup Ready™ Gene. Submitted to the United States Department of Agriculture, 09, 1993.Google Scholar
Rueppel, M. L., Brightwell, B. B., Schaefer, J., and Marvel, J. T. 1977. Metabolism and degradation of glyphosate in soil and water. J. Agric. Food Chem. 25:517528.CrossRefGoogle Scholar
Ruff, T., Eichholtz, D., Re, D., Padgette, S., and Kishore, G. 1991. Effects of amino acid substitutions on glyphosate tolerance and activity of EPSPS. Plant Physiol. 96 (Suppl):94.Google Scholar
Saari, L. L., Cotterman, J. C., and Primiani, M. M. 1990. Mechanism of sulfonylurea herbicide resistance in the broadleaf weed, Kochia scoparia. Plant Physiol. 93:5561.Google Scholar
Schulz, A., Wengenmayer, F., and Goodman, H. M. 1990. Genetic engineering of herbicide resistance in higher plants. Grit. Rev. Plant Sci. 9(1):115.CrossRefGoogle Scholar
Sellin, C., Forlani, G., Dubois, J., Nielsen, E., and Vasseur, J. 1992. Glyphosate tolerance in Cichorium intybus L. var. Magdebourg. Plant Sci. 85:223231.CrossRefGoogle Scholar
Shah, D. M., Horsch, R. B., Klee, H. J., Kishore, G. M., Winter, J. A., Tumer, N. E., Hironaka, C. M., Sanders, P. R., Gasser, C. S., Aykent, S. A., Siegel, N. R., Rogers, S. G., and Fraley, R. T. 1986. Engineering herbicide tolerance in transgenic plants. Science 233:478481.CrossRefGoogle ScholarPubMed
Shaner, D. L., 1991. Mechanisms of resistance to acetolactate synthase/acetohydroxyacid sythase inhibitors. p. 187191 in Caseley, J. C., Cussans, G. W., and Atkins, R. K., eds. Herbicide Resistance in Weeds and Crops. Butterworth-Heinemann, Ltd., Oxford.CrossRefGoogle Scholar
Shyr, Y. J., Hepburn, A. G., and Wildholm, J. M. 1992. Glyphosate selected amplification of the 5-enolpyruvylshikimate-3-phosphate synthase gene in cultured carrot cells. Mol. Gen. Genet. 232:377382.CrossRefGoogle ScholarPubMed
Singer, S. R., and McDaniel, C. N. 1985. Selection of glyphosate-tolerant tobacco calli and the expression of this tolerance in regenerated plants. Plant Physiol. 78:411416.CrossRefGoogle ScholarPubMed
Smith, E. A., and Oehme, E. W. 1992. The biological activity of glyphosate to plants and animals: A literature review. Vet. Hum. Toxicol. 34:531543.Google ScholarPubMed
Smith, C. M., Pratt, D., and Thompson, G. A. 1986. Increased 5-enolpyruvylshikimic acid 3-phosphate synthase activity in a glyphosate-tolerant variant strain of tomato cells. Plant Cell Rep. 5:298301.CrossRefGoogle Scholar
Stalker, D. M., Hiatt, W. R., and Comai, L. 1985. A single amino acid substitution in the enzyme 5-enolpyruvylshikimate-3-phosphate synthase confers resistance to the herbicide glyphosate. J. Biol. Chem. 260:47244728.CrossRefGoogle Scholar
Steinrücken, H., and Amrhein, N. 1980. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvylshikimic acid-3-phosphate synthase. Biochem. Biophys. Res. Commun. 94:12071212.CrossRefGoogle Scholar
Steinrücken, H. C., Schulz, A., Amrhein, N., Porter, C. A., and Fraley, R. 1986. Overproduction of 5-enolpyruvylshikimate-3-phosphate synthase in a glyphosate-tolerant Petunia hybrida cell line. Arch. Biochem. Biophys. 224:169178.CrossRefGoogle Scholar
Subramanian, M. V., Loney-Gallant, V., Dias, J. M., and Mireles, L. C. 1991. Acetolactate synthase inhibiting herbicides bind to the regulatory site. Plant Physiol. 96:310313.CrossRefGoogle Scholar
Sunby, C., Chow, W. S., and Anderson, J. M. 1993. Effects on photosystem II function, photoinhibition, and plant performance of the spontaneous mutation of serine-264 in the photosystem II reaction center D1 protein in triazine-resistant Brassica napus L. Plant Physiol. 103:105113.CrossRefGoogle Scholar
Thompson, G. A., Hiatt, W. R., Gacciotti, D., Stalker, D. M., and Comai, L. 1987. Expression in plants of a bacterial gene coding for glyphosate resistance. Weed Sci. 35 (Suppl. 1):1923.CrossRefGoogle Scholar
Torstensson, L., 1985. Behavior of glyphosate in soils and its degradation. p. 137150 in Grossbard, E. and Atkinson, D., eds. The Herbicide Glyphosate. Butterworth and Company, Ltd., London.Google Scholar
Tucker, E. S., and Powles, S. B. 1991. A biotype of hare barley (Hordeum leporinum) resistant to paraquat and diquat. Weed Sci. 39:159162.CrossRefGoogle Scholar
Uotila, M., Gullner, G., and Kömives, T. 1995. Induction of glutathione S-transferase activity and glutathione level in plants exposed to glyphosate. Physiol. Plant. 93:689694.CrossRefGoogle Scholar
Wang, Y., Jones, J. D., Weller, S. C., and Goldsbrough, P. B. 1991. Expression and stability of amplified genes encoding 5-enolpyruvylshikimate-3-phosphate synthase in glyphosate-tolerant tobacco cells. Plant Mol. Biol. 17:11271138.CrossRefGoogle ScholarPubMed
Weed Science Society of America. 1989. Glyphosate. p. 146149 in Herbicide Handbook of the Weed Science Society of America, 6th ed., Champaign, IL.Google Scholar