Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-02T18:42:23.069Z Has data issue: false hasContentIssue false

Potential Allelopathic Effects of Jerusalem Artichoke (Helianthus tuberosus) Leaf Tissues

Published online by Cambridge University Press:  20 January 2017

Franco Tesio*
Affiliation:
Dipartimento di Agronomia, Selvicoltura e Gestione del Territorio, Università degli Studi di Torino, Italy
Leslie A. Weston
Affiliation:
Department of Horticulture, Cornell University, Ithaca NY 14853
Francesco Vidotto
Affiliation:
Dipartimento di Agronomia, Selvicoltura e Gestione del Territorio, Università degli Studi di Torino, Italy
Aldo Ferrero
Affiliation:
Dipartimento di Agronomia, Selvicoltura e Gestione del Territorio, Università degli Studi di Torino, Italy
*
Corresponding author's E-mail: franco.tesio@unito.it.

Abstract

Jerusalem artichoke has been reported to colonize several ecological niches and agronomic crops in southern Europe. This plant is also of interest because of its high biomass production and its potential to produce ethanol for biofuel. Allelopathy may be an advantageous trait in Jerusalem artichoke under cultivation, as it potentially reduces weed interference with the crop, theoretically allowing a reduction of mechanical or chemical input required for weed management. However, this trait may also be unfavorable if other crops are cultivated in rotation with Jerusalem artichoke or in areas infested by this species. The aim of this study was to investigate the sensitivity of selected diverse crops (wheat, lettuce, corn, tomato, rice, and zucchini) and weeds (barnyardgrass, black nightshade, common lambsquarters, common purslane, large crabgrass, and pigweed) to the presence of Jerusalem artichoke dried leaf tissues in laboratory experiments performed under controlled conditions. The simulated soil incorporation of different Jerusalem artichoke residues (four cultivars and a weedy population) was carried out in a series of laboratory and greenhouse experiments. Jerusalem artichoke reduced the radicle growth of seedling lettuce (60%), tomato (30%), large crabgrass (70%), and barnyardgrass (30%), whereas total germination of these species was less affected. Sensitivity to Jerusalem artichoke residues was species dependent; germination and initial growth of corn were not affected, whereas winter wheat, lettuce, tomato, rice, and zucchini seedlings were more sensitive to residue presence. Our experiments show that both wild and cultivated decomposing Jerusalem artichoke residues, particularly leaves and stems, possess phytotoxic potential. Additional field experimentation remains to be conducted to determine if allelopathy in the field contributes to its invasibility.

Ha sido reportado que el Topinambur coloniza varios niquio ecológicas y cultivos agronómicos en el sur de Europa y especialmente en Italia. Esta planta es de interés también, por su elevada producción de biomasa y su potencial de producir etanol para biocarburantes. La alelopatía puede ser una característica vantajosa Topinambur cultivado, porque reduce potencialmente la interferencia de las malezas con los cultivos, y permite teóricamente una reducción de los aportes mecánicos y/o químicos necesarios para el manejo de las malezas. Sin embargo, esta característica puede ser también desfavorable si otros cultivos se manejan en rotación con el Topinambur o en áreas infestadas por esta especie. El objetivo de este trabajo fue de investigar la sensibilidad de algunos cultivos (trigo, lechuga, maíz, tomate, arroz y calabacín) y de algunas malezas (Echinochloa crus-galli, Solanum nigrum, Chenopodium album, Portulaca oleracea, D. sanguinalis y Amaranthus retroflexus) frente a la presencia de tejidos foliares secos de Topinambur, en un experimento de laboratorio realizado en condiciones controladas. La incorporación simulada de diferentes residuos de Topinambur en el suelo (4 cultivares y una populación de maleza) se realizó a través de series de experimentos de laboratorio y de invernadero. El Topinambur redujo el crecimiento radical de las plántulas de lechuga (60%), tomate (30%), D. sanguinalis (70%) y Echinochloa crus-galli (30%), mientras que la germinación total de estas especies ha sido menos afectada. La sensibilidad a los residuos de Topinambur fue especie dependiente; la germinación y el crecimiento inicial del maíz no han sido afectados, mientras que las plántulas de trigo, lechuga, tomate, arróz y calabacín fueron más sensibles a la presencia de los residuos. Nuestro experimento muestra como los residuos decompuestos de ambos Topinambur, cultivados y selváticos, particularmente de hojas y tallos, tienen un potencial fitotóxico. Suplementarios experimentos de campo deben ser conducidos para determinar si la alelopatía en campo contribuye a la invasibilidad del Topinambur a través de Italia.

Type
Weed Management—Techniques
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Azania, A. A. P. M., et al 2003. Allelopathic plants. 7. Sunflower (Helianthus annuus L.). Allel. J. 11:120.Google Scholar
Bertholdsson, N. O. 2004. Variation in allelopathic activity over 100 years of barley selection and breeding. Weed Res. (Oxford) 44:7886.CrossRefGoogle Scholar
Brown, S. N. and Stewartson, K. 1983. On an integral equation of marginal separation. Siam J. Appl. Math 43:11191126.CrossRefGoogle Scholar
Burden, R. and Faires, J. eds. 1988. Numerical Analysis. 4th ed. Boston: PWS Publishing.Google Scholar
Callaway, R. M., Pennings, S. C., and Richards, C. L. 2003. Phenotypic plasticity and interactions among plants. Ecology 84:11151128.CrossRefGoogle Scholar
DongZhi, L., Tsuzuki, E., Sugimoto, Y., YanJun, D., Matsuo, M., and Terao, H. 2004a. Allelopathic effects of aqueous Aloe vera leaf extracts on selected crops. Allel. J. 13:6774.Google Scholar
DongZhi, L., Tsuzuki, E., YanJun, D., Terao, H., and Xuan, T. D. 2004b. Potential biological control of weeds in rice fields by allelopathy of dwarf lilyturf plants. BioControl 49:187196.Google Scholar
Fehér, A. 2007. Historical reconstruction of expansion of non-native plants in the Nitra river basin (sw Slovakia). Kanitzia 15:4762.Google Scholar
Harper, J. L. 1964. The nature and consequence of interference among plants. Pages 465481. in. Proccedings of the 11th International Conference of Genetics. The Hague, the Netherlands.Google Scholar
Hong, N. H., Xuan, T. D., Tsuzuki, E., Terao, H., Matsuo, M., and Khanh, T. D. 2004. Weed control of four higher plant species in paddy rice fields in Southeast Asia. J. Agron. Crop Sci 190:5964.CrossRefGoogle Scholar
Hua, S., ShaoLin, P., XiaoYi, W., DeQing, Z., and Chi, Z. 2005. Potential allelochemicals from an invasive weed Mikania micrantha H.B.K. J. Chem. Ecol 31:16571668.Google Scholar
Khanh, T. D., Hong, N. H., Xuan, T. D., and Chung, I. M. 2005. Paddy weed control by medicinal and leguminous plants from Southeast Asia. Crop Prot 24:421431.CrossRefGoogle Scholar
Leather, G. R. 1983. Sunflowers (Helianthus annus) are allelopathic to weeds. Weed Sci 31:3742.CrossRefGoogle Scholar
Macías, F. A., Oliveros-Bastidas, A., Marín, D., Castellano, D., Simonet, A. M., and Molinillo, J. M. G. 2004. Degradation studies on benzoxazinoids. Soil degradation dynamics of 2,4-dihydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA) and its degradation products, phytotoxic allelochemicals from Gramineae. J. Agric. Food Chem 52:64026413.CrossRefGoogle ScholarPubMed
Molisch, H. 1937. Der einfluss einer pflanze auf die andere-allelopathie. Jena, Germany: Gustav Fischer Verlag Jena. 106.Google Scholar
Orr, S. P., Rudgers, J. A., and Clay, K. 2005. Invasive plants can inhibit native tree seedlings: testing potential allelopathic mechanisms. Plant Ecol 181:153165.CrossRefGoogle Scholar
Protopopova, V., Shevera, M., and Mosyakin, S. 2006. Deliberate and unintentional introduction of invasive weeds: a case study of the alien flora of Ukraine. Euphytica 148:1733.CrossRefGoogle Scholar
Putnam, A. R. and Duke, W. O. 1974. Biological suppression of weeds: evidence for allelopathy in accessions of cucumber. Science 185:370372.CrossRefGoogle ScholarPubMed
Reigosa, M. J., Sanchez-Moreiras, A., and Gonzales, L. 1999. Ecophysiolocal approach in allelopathy. Critical Reviews in Plant Sciences 18:577608.CrossRefGoogle Scholar
Schittenhelm, S. 1996. Competition and control of volunteer Jerusalem artichoke in various crops. Journal of Agronomy and Crop Science 176:103110.CrossRefGoogle Scholar
Saggese, E., Foglia, T., Leather, G., Thompson, M., Bills, D., and Hoagland, P. 1985. Fractionation of allelochemicals from oilseed sunflowers and Jerusalem artichokes. Pages 99112. in Thompson, A. ed. The Chemistry of Allelopathy: Biochemical Interactions among Plants. Washington, DC: American Chemical Society.CrossRefGoogle Scholar
Schnitzler, A., Hale, B. W., and Alsum, E. M. 2007. Examining native and exotic species diversity in European riparian forests. Biol. Conserv 138:146156.CrossRefGoogle Scholar
Swanton, C. J. and Cavers, P. B. 1988. Regenerative capacity of rhizomes and tubers from two populations of Helianthus tuberosus L. (Jerusalem artichoke). Weed Res 28:339345.CrossRefGoogle Scholar
Swanton, C. J., Cavers, P. B., Clements, D. R., and Moore, M. J. 1992. The biology of Canadian weeds. 101. Helianthus tuberosus L. Can. J. Plant Sci 72:13671382.CrossRefGoogle Scholar
Tesio, F., Vidotto, F., Weston, L. A., and Ferrero, A. 2008. Allelopathic effects of aqueous leaf extracts of Helianthus tuberosus L. Allel. J. 22:4758.Google Scholar
Török, K., Botta-Dukát, Z., Dancza, I., Németh, I., Kiss, J., Mihály, B., and Magyar, D. 2003. Invasion gateways and corridors in the Carpathian basin: biological invasions in Hungary. Biol. Inv 5:349356.CrossRefGoogle Scholar
Vendula, Å 2008. Invasive plant species in riverbank vegetation of water courses in the basin of the Ploucnice River. GeoScape 3:3337.Google Scholar
Vidotto, F., Tesio, F., and Ferreo, A. 2008. Allelopathic effects of Helianthus tuberosus L. on germination and seedling growth of several crops and weeds. Biol. Agric. Hort 26:5568.CrossRefGoogle Scholar
Vivanco, J. M., Bais, H. P., Stermitz, F. R., Thelen, G. C., and Callaway, R. M. 2004. Biogeographical variation in community response to root allelochemistry: novel weapons and exotic invasion. Ecol. Lett 7:285292.CrossRefGoogle Scholar
Wadsworth, R. A., Collingham, Y. C., Willis, S. G., Huntley, B., and Hulme, P. E. 2000. Simulating the spread and management of alien riparian weeds: are they out of control? J. Appl. Ecol 37:2838.CrossRefGoogle Scholar
Wall, D. A. and Friesen, G. H. 1989. Volunteer Jerusalem artichoke (Helianthus tuberosus) interference and control in barley (Hordeum vulgare). Weed Technol 3:170172.CrossRefGoogle Scholar
Walter, J., Essl, F., Englisch, T., and Kiehn, M. 2005. Neophytes in Austria: habitat preferences and ecological effects. NEOBIOTA 6:1325.Google Scholar
Weston, L. A. 1996. Utilization of allelopathy for weed management in agroecosystems. Agron. J. 88:860866.CrossRefGoogle Scholar
Weston, L. A. 2005. History and current trends in the use of allelopathy for weed management. HortTechnology 15:529534.CrossRefGoogle Scholar
Wyse, D. L. and Young, F. L. 1980. Jerusalem artichoke interference in corn [=maize] and soybeans. Pages 48 in Proceedings of the North Central Weed Control Conference. Milwaukee, WI North Central Weed Science Society.Google Scholar
Wyse, D. L., Young, F. L., and Jones, R. J. 1986. Influence of Jerusalem artichoke (Helianthus tuberosus) density and duration of interference on soybean (Glycine max) growth and yield. Weed Sci 34:243247.CrossRefGoogle Scholar
Xuan, T. D., Eiji, T., Shinkichi, T., and Khanh, T. D. 2004. Methods to determine allelopathic potential of crop plants for weed control. Allel. J. 13:149164.Google Scholar
Xuan, T. D. and Tsuzuki, E. 2004. Allelopathic plants: buckwheat (Fagopyrum spp.). Allel. J. 13:137148.Google Scholar