Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-17T23:32:43.946Z Has data issue: false hasContentIssue false

Rice Crop Response to Simulated Drift of Imazamox

Published online by Cambridge University Press:  20 January 2017

Eric P. Webster*
Affiliation:
School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, 104 Sturgis Hall, Baton Rouge, LA 70803
Justin B. Hensley
Affiliation:
School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, 104 Sturgis Hall, Baton Rouge, LA 70803
David C. Blouin
Affiliation:
Department of Experimental Statistics, Louisiana State University, 45 Agricultural Administration Building, Baton Rouge, LA 70803
Dustin L. Harrell
Affiliation:
Louisiana State University Agricultural Center Rice Research Station, 1373 Caffey Road, Rayne, LA 70578
Jason A. Bond
Affiliation:
Delta Research and Extension Center, Mississippi Agricultural and Forestry Experiment Station, Stoneville, MS 38776
*
Corresponding author's E-mail: ewebster@agcenter.lsu.edu.

Abstract

Field studies were conducted near Crowley, LA, to evaluate the effects of simulated herbicide drift on ‘Cocodrie' rice. Each treatment was made with the spray volume varying proportionally to herbicide dosage based on a spray volume of 234 L ha−1 and an imazamox rate of 44 g ai ha−1. The 6.3%, 2.7-g ha−1, herbicide rate was applied at a spray volume of 15 L ha−1 and the 12.5%, 5.5-g ha−1, herbicide rate was applied at a spray volume of 29 L ha−1. Rice was treated at the one-tiller, panicle differentiation, boot, and physiological maturity growth stages. Injury was observed with imazamox applied at the one-tiller timing. Injury was not observed until 21 and 28 d after treatment (DAT) when imazamox was applied at the panicle differentiation and boot timings. The greatest reduction in plant height resulted from applications at the one-tiller timing at 7 and 14 DAT; however, when evaluated at harvest, plant height was reduced no more than 10%. Imazamox, averaged over rate, applied to rice at the boot timing reduced primary crop yield 66% compared with the nontreated. Applications at the boot timing resulted in an increased ratoon crop yield; however, the yield increase did not compensate for the loss in the primary crop yield.

Estudios de campo fueron realizados cerca de Crowley, Louisiana, para evaluar los efectos de la deriva simulada de herbicidas en el arroz 'Cocodrie'. Cada tratamiento fue hecho con un volumen de aspersión que se varió proporcionalmente a la dosis del herbicida con base en un volumen de aspersión de 234 L ha−1 y una dosis de imazamox de 44 g ai ha−1. La dosis de herbicida de 6.3%, 2.7 g ha−1, fue aplicada con un volumen de aspersión de 15 L ha−1. y la dosis de 12.5%, 5.5 g ha−1, fue aplicada con un volumen de aspersión de 29 L ha−1. El arroz fue tratado en los estadios de crecimiento de un hijuelo, diferenciación de panícula, emergencia de tallo floral, y madurez fisiológica. Se observó daño con imazamox aplicado en el estadio de un hijuelo. No se observo daño hasta 21 y 28 d después del tratamiento (DAT) cuando imazamox fue aplicado en los estadios de diferenciación de panícula y de emergencia de tallo floral. La mayor reducción en la altura de las plantas se debió a aplicaciones en el estadio de un hijuelo a 7 y 14 DAT. Sin embargo, cuando se evaluó en el momento de la cosecha, la altura de planta se redujo en no más de 10%. Imazamox, promediando las dosis, aplicado al arroz en el momento de la emergencia del tallo floral, redujo el rendimiento del cultivo primario 66% comparado con el testigo sin tratamiento. Las aplicaciones al momento de la emergencia del tallo floral resultaron en un incremento en el rendimiento de la soca. Sin embargo, el aumento del rendimiento no compensó la pérdida de rendimiento del cultivo primario.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: William Johnson: Purdue University.

References

Literature Cited

Banks, PA, Schroeder, J (2002) Carrier volume affects herbicide activity in simulated spray drift studies. Weed Technol 16:833837 Google Scholar
Bond, JA, Griffin, JL, Ellis, JM, Linscombe, SD, Williams, BJ (2006) Corn and rice response to simulated drift of imazethapyr plus imazapyr. Weed Technol 20:113117 Google Scholar
Bouse, LF, Carlton, JB, Merkle, MG. 1976. Spray recovery from nozzles designed to reduce drift. Weed Sci. 24:361365 Google Scholar
Carlson, DR, Lloyd, R, Harden, J, Whatley, T, Hackworth, M, Mazour, C (2002) Clearfield production system—Newpath herbicide (imazethapyr) for use with Clearfield rice. Weed Sci Soc Am Abstr 42:63 Google Scholar
Crabbe, RS, McCooeye, M, Mickle, RE (1994) The influence of atmospheric stability on wind drift from ultra-low-volume aerial forest spray applications. J Appl Meteorol 33:500507 Google Scholar
Croughan, TP (1994) Application of tissue culture techniques to the development of herbicide resistant rice. Louisiana Agric 3:2526 Google Scholar
Croughan, TP, inventor; Board of Supervisors of Louisiana State University and Agricultural and Mechanical College, assignee. 1998 June 30. Herbicide resistant rice. US patent 5,773,704Google Scholar
Ellis, JM, Griffin, JL, Jones, CA (2002) Effects of carrier volume on corn (Zea mays) and soybean (Glycine max) response to simulated drift of glyphosate and glufosinate. Weed Technol 16:587592 Google Scholar
Everitt, JD, Keeling, JW (2009) Cotton growth and yield response to simulated 2,4-D and dicamba drift. Weed Technol 23:503506 Google Scholar
Gealy, DR, Mitten, DH, Rutger, JN (2003) Gene flow between red rice (Oryza sativa) and herbicide-resistant rice (O. sativa): implications for weed management. Weed Technol 17:627645 Google Scholar
Groth, D, Hollier, C, Rush, C (2014). Disease management. Pages 82105 in Saichuk, J, ed. Louisiana Rice Production Handbook. Baton Rouge, LA: Louisiana State University AgCenter Publ 2321Google Scholar
Hanks, JE (1995) Effects of drift retardant adjuvants on spray droplet size of water and paraffinic oil applied at ultralow volume. Weed Technol 9:380384 Google Scholar
Hensley, JB, Webster, EP, Blouin, DC, Harrell, DL, Bond, JA (2012) Impact of drift rates of imazethapyr and low carrier volume on non-Clearfield rice. Weed Technol 26:236242 Google Scholar
Hensley, JB, Webster, EP, Blouin, DC, Harrell, DL, Bond, JA (2013) Response of rice to drift rates of glyphosate applied at low carrier volumes. Weed Technol 2:257262 Google Scholar
Hoss, NE, Al-Khatib, K, Peterson, DE, Loughin, TM (2003) Efficacy of glyphosate, glufosinate, and imazethapyr on selected weed species. Weed Sci 51:110117 Google Scholar
Jones, EJ, Hanks, JE, Willis, GD, Mack, RE (2007) Effect of two polysaccharide adjuvants on glyphosate spray droplet size and efficacy. Weed Technol 21:171174 Google Scholar
[LSUA] Louisiana State University AgCenter (2013) 2013 Louisiana Rice Acreage by Variety. http://www.lsuagcenter.com/MCMS/RelatedFiles/%7B2BE98491-DE55-4795-A05F-CE1D0366FDBE%7D/2013Hybrid.pdf. Accessed: February 23, 2015Google Scholar
[LSUA] Louisiana State University AgCenter (2014) 2013 Louisiana Summary: Agriculture and Natural Resources. http://www.lsuagcenter.com/agsummary/narrative#rice. Accessed: February 23, 2015Google Scholar
Marple, ME, Al-Khatib, K, Peterson, DE (2008) Cotton injury and yield as affected by simulated drift of 2,4-D and dicamba. Weed Technol 22:609614 Google Scholar
Meins, KB, Scott, RC, Dillon, TW, Pearrow, ND (2004) Tolerance of Clearfield® rice to imazamox. Pages 132136 in Norman, RJ, Meullenet, JF, Moldenhauer, KAK, eds. B.R. Wells Rice Research Studies. Ark Agric Exp Stn Res Ser 517Google Scholar
Muhitch, MJ, Shaner, DL, Stidham, MA (1987) Imidazolinones and acetohydroxyacid synthase from higher plants. Plant Physiol 83:451456 Google Scholar
Nuyttens, D, Baetens, K, De Schampheleire, M, Sonck, B (2007) Effect of nozzle type, size and pressure on spray droplet characteristics. Biosyst Eng 97:333345 Google Scholar
Pellerin, KJ, Webster, EP, Zhang, W, Blouin, DC (2004) Potential use of imazethapyr mixtures in drill-seeded imidazolinone-resistant rice. Weed Technol 18:10371042 Google Scholar
Ramsdale, BK, Messersmith, CG, Nalewaja, JD (2003) Spray volume, formulation, ammonium sulfate, and nozzle effects on glyphosate efficacy. Weed Technol 17:589598 Google Scholar
Roider, CA, Griffin, JL, Harrison, SA, Jones, CA (2008) Carrier volume affects wheat response to simulated glyphosate drift. Weed Technol 22:453458 Google Scholar
[SDTF] Spray Drift Task Force (1997) A Summary of Aerial Application Studies. http://www.agdrift.com. Accessed: October 22, 2014Google Scholar
Shaner, DL (1991) Physiological effects of the imidazolinone herbicides. Pages 129137 in Shaner, DL, O'Connor, SL, eds. The Imidazolinone Herbicides. Boca Raton, FL: CRC Press Google Scholar
Shaner, DL, ed (2014) Herbicide Handbook. 10th edn. Lawrence, KS: Weed Science Society of America. Pp 254255 Google Scholar
Shaw, DR, Ratnayake, S, Smith, CA (1990) Effects of herbicide application timing on johnsongrass (Sorghum halepense) and pitted morningglory (Ipomoea lacunosa) control. Weed Technol 4:900903 Google Scholar
Stidham, MA, Singh, BK (1991) Imidazolinone-acetohydroxyacid synthase interactions. Pages 7289 in Shaner, DL, O'Connor, SL, eds. The Imidazolinone Herbicides. Boca Raton, FL: CRC Press Google Scholar
Tan, S, Evans, RR, Dahmer, ML, Singh, BK, Shaner, DL (2005) Imidazolinone-tolerant crops: history, current status and future. Pest Manag Sci 61:246257 Google Scholar
Thistle, HW (2004) Meteorological concepts in the drift of pesticides. Pages 156162 in Proceedings of International Conference on Pesticide Application for Drift Management. Pullman, WA Washington State University Google Scholar
[USDAERS] U.S. Department of Agriculture Economic Research Service (2014) Rice Yearbook 2014. http://www.ers.usda.gov/data-products/rice-yearbook-2014.aspx. Accessed: January 22, 2015Google Scholar
VanGessel, MJ, Johnson, QR (2005) Evaluating drift control agents to reduce short distance movement and effect on herbicide performance. Weed Technol 19:7885 Google Scholar
Webster, EP, Carlson, TP, Salassi, ME, Hensley, JB, Blouin, DC (2012) Imazethapyr plus residual herbicide programs for imidazolinone–resistant rice. Weed Technol 26:410416 Google Scholar
Webster, EP, Hensley, JB, Blouin, DC, Harrell, DL, Bond, JA (2015) Impact of off-site deposition of glufosinate to non-Clearfield rice. Weed Technol 29. 28:207216 Google Scholar
Webster, EP, Masson, JA (2001) Acetolactate synthase–inhibiting herbicides on imidazolinone-tolerant rice. Weed Sci 49:652657 Google Scholar