Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-14T10:30:49.190Z Has data issue: false hasContentIssue false

Effect of the addition of antifreeze protein type I on the quality of post-thawed domestic cat epididymal sperm

Published online by Cambridge University Press:  15 March 2023

L.P. Alcaráz*
Affiliation:
Faculdade de Veterinária, Universidade Federal Fluminense, Av. Vital Brasil Filho, 64, CEP 24230-340, Niterói, RJ, Brazil
P.V.S. Pereira
Affiliation:
Faculdade de Veterinária, Universidade Federal Fluminense, Av. Vital Brasil Filho, 64, CEP 24230-340, Niterói, RJ, Brazil
T.A. Oliveira
Affiliation:
Faculdade de Veterinária, Universidade Federal Fluminense, Av. Vital Brasil Filho, 64, CEP 24230-340, Niterói, RJ, Brazil
L.F.L. Correia
Affiliation:
Faculdade de Veterinária, Universidade Federal Fluminense, Av. Vital Brasil Filho, 64, CEP 24230-340, Niterói, RJ, Brazil
E.M. Vasconcelos
Affiliation:
Faculdade de Veterinária, Universidade Federal Fluminense, Av. Vital Brasil Filho, 64, CEP 24230-340, Niterói, RJ, Brazil
F.Z. Brandão
Affiliation:
Faculdade de Veterinária, Universidade Federal Fluminense, Av. Vital Brasil Filho, 64, CEP 24230-340, Niterói, RJ, Brazil
J.M.G. Souza-Fabjan*
Affiliation:
Faculdade de Veterinária, Universidade Federal Fluminense, Av. Vital Brasil Filho, 64, CEP 24230-340, Niterói, RJ, Brazil
*
Author for correspondence: L.P. Alcaráz. Faculdade de Veterinária, Universidade Federal Fluminense, Av. Vital Brasil Filho, 64, CEP 24230-340, Niterói, RJ, Brazil. E-mail: leticiaaalcaraz@gmail.com; J.M.G. Souza-Fabjan. Faculdade de Veterinária, Universidade Federal Fluminense, Av. Vital Brasil Filho, 64, CEP 24230-340, Niterói, RJ, Brazil. E-mail: joannavet@gmail.com
Author for correspondence: L.P. Alcaráz. Faculdade de Veterinária, Universidade Federal Fluminense, Av. Vital Brasil Filho, 64, CEP 24230-340, Niterói, RJ, Brazil. E-mail: leticiaaalcaraz@gmail.com; J.M.G. Souza-Fabjan. Faculdade de Veterinária, Universidade Federal Fluminense, Av. Vital Brasil Filho, 64, CEP 24230-340, Niterói, RJ, Brazil. E-mail: joannavet@gmail.com

Summary

Cryopreservation of domestic cat semen is mainly performed as a model for the establishment of endangered wild feline protocols. The supplementation of antifreeze protein type I (AFP I) to cryopreservation medium has shown improvement in frozen–thawed sperm quality in other species, but its effect on cat semen has not yet been tested. This study aimed to assess the addition of AFP I to cryopreservation medium in domestic cats. Sperm was obtained from the cauda epididymis of orchiectomized cats; sperm was then pooled in Tris buffer and allocated into three treatments, according to AFP I final concentration: 0 (control), 0.1, and 0.5 µg/ml. Nine replicates were cryopreserved in a two-step protocol and subsequently thawed at 37°C for 30 s. There was no difference (P > 0.05) among the control, 0.1 and 0.5 µg/ml groups for parameters such as motility, vitality, functional membrane integrity, mature chromatin, normal morphology, and sperm binding to egg perivitelline membrane. In the 0.5 μg/ml group only, percentages of live sperm with intact acrosome and of sperm with most inactive mitochondria (DAB III) showed a significant reduction, along with a tendency (P = 0.053) to an increase in the percentage of sperm with most active mitochondria (DAB II). In conclusion, the supplementation of 0.1 and 0.5 µg/ml of AFP I did not promote consistent beneficial effects on the overall sperm cryotolerance in domestic cats.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Axnér, E., Hermansson, U. and Linde-Forsberg, C. (2004). The effect of Equex STM paste and sperm morphology on post-thaw survival of cat epididymal spermatozoa. Animal Reproduction Science, 84(1–2), 179191. doi: 10.1016/j.anireprosci.2003.11.003 CrossRefGoogle ScholarPubMed
Barbato, G. F., Cramer, P. G. and Hammerstedt, R. H. (1998). A practical in vitro sperm-egg binding assay that detects subfertile males. Biology of Reproduction, 58(3), 686699. doi: 10.1095/biolreprod58.3.686 CrossRefGoogle ScholarPubMed
Bernardini, A., Hozbor, F., Sanchez, E., Fornés, M. W., Alberio, R. H. and Cesari, A. (2011). Conserved ram seminal plasma proteins bind to the sperm membrane and repair cryopreservation damage. Theriogenology, 76(3), 436447. doi: 10.1016/j.theriogenology.2011.02.020 CrossRefGoogle Scholar
Buranaamnuay, K. (2015). Determination of appropriate cryopreservation protocols for epididymal cat spermatozoa. Reproduction in Domestic Animals, 50(3), 378385. doi: 10.1111/rda.12496 CrossRefGoogle ScholarPubMed
Buranaamnuay, K. (2017). Protocols for sperm cryopreservation in the domestic cat: A review. Animal Reproduction Science, 183, 5665. doi: 10.1016/j.anireprosci.2017.06.002 CrossRefGoogle ScholarPubMed
Cedenho, A. P. and Miyamoto, I. T. (1990). Comparison of supravital staining techniques for spermatozoa: eosin and eosin-nigrosin. Jornal Brasileiro de Urologia, 16(4), 234236.Google Scholar
Chatdarong, K., Thuwanut, P., Manee-in, S., Lohachit, C. and Axnér, E. (2010). Effects of thawing temperature and post-thaw dilution on the quality of cat spermatozoa. Reproduction in Domestic Animals, 45(2), 221227. doi: 10.1111/j.1439-0531.2008.01218.x CrossRefGoogle ScholarPubMed
Cheung, R. C. F., Ng, T. B. and Wong, J. H. (2017). Antifreeze proteins from diverse organisms and their applications: An overview. Current Protein and Peptide Science, 18(3), 262283. doi: 10.2174/1389203717666161013095027 CrossRefGoogle ScholarPubMed
Cocchia, N., Ciani, F., El-Rass, R., Russo, M., Borzacchiello, G., Esposito, V., Montagnaro, S., Avallone, L., Tortora, G. and Lorizio, R. (2010). Cryopreservation of feline epididymal spermatozoa from dead and alive animals and its use in assisted reproduction. Zygote, 18(1), 18. doi: 10.1017/S0967199409990256 CrossRefGoogle ScholarPubMed
Colás, C., Junquera, C., Pérez-Pé, R., Cebrián-Pérez, J. A. and Muiño-Blanco, T. (2009). Ultrastructural study of the ability of seminal plasma proteins to protect ram spermatozoa against cold-shock. Microscopy Research and Technique, 72(8), 566572. doi: 10.1002/jemt.20710 CrossRefGoogle ScholarPubMed
Correia, L. F. L., Espírito-Santo, C. G., Braga, R. F., Carvalho-de-Paula, C. J., da Silva, A. A., Brandão, F. Z., Freitas, V. J. F., Ungerfeld, R. and Souza-Fabjan, J. M. G. (2021). Addition of antifreeze protein type I or III to extenders for ram sperm cryopreservation. Cryobiology, 98, 194200. doi: 10.1016/j.cryobiol.2020.11.001 CrossRefGoogle ScholarPubMed
Curry, M. R. (2000). Cryopreservation of semen from domestic livestock. Reviews of Reproduction, 5(1), 4652. doi: 10.1530/ror.0.0050046 CrossRefGoogle ScholarPubMed
Dadoune, J. P., Mayaux, M. J. and Guihard-Moscato, M. L. (1988). Correlation between defects in chromatin condensation of human spermatozoa stained by aniline blue and semen characteristics. Andrologia, 20(3), 211217. doi: 10.1111/j.1439–0272.1988.tb01058.x CrossRefGoogle ScholarPubMed
DeVries, A. L. and Wohlschlag, D. E. (1969). Freezing resistance in some Antarctic fishes. Science, 163(3871), 10731075. doi: 10.1126/science.163.3871.1073 CrossRefGoogle ScholarPubMed
Esteso, M. C., Soler, A. J., Fernández-Santos, M. R., Quintero-Moreno, A. A. and Garde, J. J. (2013). Functional significance of the sperm head morpho- metric size and shape for determining freezability in Iberian red deer (Cervus elaphus hispanicus) epididymal sperm samples. Journal of Andrology, 27(5), 662670. doi: 10.2164/jandrol.106.000489 CrossRefGoogle Scholar
Isachenko, E., Isachenko, V., Katkov, I. I., Dessole, S. and Nawroth, F. (2003). Vitrification of mammalian spermatozoa in the absence of cryoprotectants: From past practical difficulties to present success. Reproductive Biomedicine Online, 6(2), 191200. doi: 10.1016/s1472-6483(10)61710-5 CrossRefGoogle ScholarPubMed
IUCN (International Union for Conservation of Nature and Natural Resources). IUCN Red List of Threatened Species. Available online: https://www.iucnredlist.org [Accessed 2020]Google Scholar
Kar, R. K., Mroue, K. H., Kumar, D., Tejo, B. A. and Bhunia, A. (2016). Structure and dynamics of antifreeze protein–model membrane interactions: A combined spectroscopic and molecular dynamics study. Journal of Physical Chemistry. B, 120(5), 902914. doi: 10.1021/acs.jpcb.5b11164 CrossRefGoogle ScholarPubMed
Kim, H. J., Lee, J. H., Hur, Y. B., Lee, C. W., Park, S. H. and Koo, B. W. (2017). Marine antifreeze proteins: Structure, function, and application to cryopreservation as a potential cryoprotectant. Marine Drugs, 15(2), 27. doi: 10.3390/md15020027 CrossRefGoogle ScholarPubMed
Klaus, C., Eder, S., Franz, C. and Müller, K. (2016). Successful cryopreservation of domestic cat (Felis catus) epididymal sperm after slow equilibration to 15 or 10°C. Reproduction in Domestic Animals, 51(2), 195203. doi: 10.1111/rda.12666 CrossRefGoogle ScholarPubMed
Koshimoto, C. and Mazur, P. (2002). Effects of warming rate, temperature, and antifreeze proteins on the survival of mouse spermatozoa frozen at an optimal rate. Cryobiology, 45(1), 4959. doi: 10.1016/s0011-2240(02)00105-0 CrossRefGoogle ScholarPubMed
Kovács, A. and Foote, R. H. (1992). Viability and acrosome staining of bull, boar and rabbit spermatozoa. Biotechnic and Histochemistry, 67(3), 119124. doi: 10.3109/10520299209110020 CrossRefGoogle ScholarPubMed
Luvoni, G. C. (2006). Gamete cryopreservation in the domestic cat. Theriogenology, 66(1), 101111. doi: 10.1016/j.theriogenology.2006.03.012 CrossRefGoogle ScholarPubMed
Luvoni, G. C. and Morselli, M. G. (2017). Canine epididymal spermatozoa: A hidden treasure with great potential. Reproduction in Domestic Animals, 52(Suppl. 2), 197201. doi: 10.1111/rda.12820 CrossRefGoogle ScholarPubMed
Martínez-Pastor, F., Anel, L., Guerra, C., Alvarez, M., Soler, A. J., Garde, J. J., Chamorro, C. and de Paz, P. (2006). Seminal plasma improves cryopreservation of Iberian red deer epididymal sperm. Theriogenology, 66(8), 18471856. doi: 10.1016/j.theriogenology.2006.04.036 CrossRefGoogle ScholarPubMed
Mizutani, T., Sumigama, S., Nagakubo, K., Shimizu, N., Oba, H., Hori, T. and Tsutsui, T. (2010). Usefulness of addition of orvus ES paste and sodium lauryl sulfate to frozen feline semen. Journal of Veterinary Medical Science, 72(1), 2327. doi: 10.1292/jvms.08-0332 CrossRefGoogle ScholarPubMed
Patel, M., Gandotra, V. K., Cheema, R. S., Bansal, A. K. and Kumar, A. (2016). Seminal plasma heparin binding proteins improve semen quality by reducing oxidative stress during cryopreservation of cattle bull semen. Asian-Australasian Journal of Animal Sciences, 29(9), 12471255. doi: 10.5713/ajas.15.0586 CrossRefGoogle ScholarPubMed
Payne, S. R., Oliver, J. E. and Upreti, G. C. (1994). Effect of antifreeze proteins on the motility of ram spermatozoa. Cryobiology, 31(2), 180184. doi: 10.1006/cryo.1994.1021 CrossRefGoogle ScholarPubMed
Prathalingam, N. S., Holt, W. V., Revell, S. G., Mirczuk, S., Fleck, R. A. and Watson, P. F. (2006). Impact of antifreeze proteins and antifreeze glycoproteins on bovine sperm during freeze–thaw. Theriogenology, 66(8), 18941900. doi: 10.1016/j.theriogenology.2006.04.041 CrossRefGoogle ScholarPubMed
Ramu, S. and Jeyendran, R. S. (2013). The hypo-osmotic swelling test for evaluation of sperm membrane integrity. Methods in Molecular Biology, 927, (21–25). doi: 10.1007/978-1-62703-038-0_3 CrossRefGoogle ScholarPubMed
Rui, B. R., Angrimani, D. S. R., Losano, J. D. A., Bicudo, L. C., Nichi, M. and Pereira, R. J. G. (2017). Validation of simple and cost-effective stains to assess acrosomal status, DNA damage and mitochondrial activity in rooster spermatozoa. Animal Reproduction Science, 187, 133140. doi: 10.1016/j.anireprosci.2017.10.017 CrossRefGoogle ScholarPubMed
Thammapradit, K. and Ponglowhapan, S. (2018). Evaluation of two cryopreservation protocols on cauda epididymal spermatozoa characteristics in domestic cats. Thai Journal of Veterinary Medicine, 48(1), 17.Google Scholar
Toyonaga, M., Sato, Y., Morita, M., Watanabe, M., Oba, H., Mizutani, T., Hori, T. and Tsutsui, T. (2010). The qualities of cryopreserved epididymal sperm collected from feline epididymides stored at low temperature. Journal of Veterinary Medical Science, 72(6), 777780. doi: 10.1292/jvms.09-0260 CrossRefGoogle ScholarPubMed
Upreti, G. C., Payne, S. R., Duganzich, D. M., Oliver, J. E. and Smith, J. F. (1996). Enzyme leakage during cryopreservation of ram spermatozoa. Animal Reproduction Science, 41(1), 2736. doi: 10.1016/0378-4320(95)01442-X CrossRefGoogle Scholar
Watson, P. F. (2000). The causes of reduced fertility with cryopreserved semen. Animal Reproduction Science, 60–61, 481492. doi: 10.1016/s0378-4320(00)00099-3 CrossRefGoogle ScholarPubMed
Zambelli, D., Iacono, E., Raccagni, R. and Merlo, B. (2010). Quality and fertilizing ability of electroejaculated cat spermatozoa frozen with or without Equex STM paste. Theriogenology, 73(7), 886892. doi: 10.1016/j.theriogenology.2009.11.012 CrossRefGoogle ScholarPubMed