Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-14T13:59:19.080Z Has data issue: false hasContentIssue false

Effects of salinity and sea salt type on egg activation, fertilization, buoyancy and early embryology of European eel, Anguilla anguilla

Published online by Cambridge University Press:  24 February 2015

Sune Riis Sørensen*
Affiliation:
Section for Marine Ecology and Oceanography, National Institute of Aquatic Resources, Technical University of Denmark, Jægersborg Allé 1, DK-2920 Charlottenlund, Denmark.
Ian Anthony Ernest Butts
Affiliation:
Section for Marine Ecology and Oceanography, National Institute of Aquatic Resources, Technical University of Denmark, Jægersborg Allé 1, DK-2920 Charlottenlund, Denmark.
Peter Munk
Affiliation:
Section for Marine Ecology and Oceanography, National Institute of Aquatic Resources, Technical University of Denmark, Jægersborg Allé 1, DK-2920 Charlottenlund, Denmark.
Jonna Tomkiewicz
Affiliation:
Section for Marine Ecology and Oceanography, National Institute of Aquatic Resources, Technical University of Denmark, Jægersborg Allé 1, DK-2920 Charlottenlund, Denmark.
*
All correspondence to: Sune Riis Sørensen. Section for Marine Ecology and Oceanography, National Institute of Aquatic Resources, Technical University of Denmark, Jægersborg Allé 1, DK-2920 Charlottenlund, Denmark. Tel: +45 21 31 49 83. Fax: +45 35 88 33 33. e-mail: srs@aqua.dtu.dk

Summary

Improper activation and swelling of in vitro produced eggs of European eel, Anguilla anguilla, has been shown to negatively affect embryonic development and hatching. We investigated this phenomenon by examining the effects of salinity and sea salt type on egg dimensions, cell cleavage patterns and egg buoyancy. Egg diameter after activation, using natural seawater adjusted to different salinities, varied among female eels, but no consistent pattern emerged. Activation salinities between 30–40 practical salinity unit (psu) produced higher quality eggs and generally larger egg diameters. Chorion diameters reached maximal values of 1642 ± 8 μm at 35 psu. A positive relationship was found between egg neutral buoyancy and activation salinity. Nine salt types were investigated as activation and incubation media. Five of these types induced a substantial perivitelline space (PVS), leading to large egg sizes, while the remaining four salt types resulted in smaller eggs. All salt types except NaCl treatments led to high fertilization rates and had no effect on fertilization success as well as egg neutral buoyancies at 7 h post-fertilization. The study points to the importance of considering ionic composition of the media when rearing fish eggs and further studies are encouraged.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alavi, S.M.H., Linhart, O., Coward, K. & Rodina, M. (2008). Fish spermatology: implications for aquaculture management. In Alavi, S.M.H., Cosson, J., Coward, K. & Rafiee, G. (eds), Fish Spermatology. Oxford: Alpha Science Ltd., pp. 397461.Google Scholar
Alderdice, D.F., Rao, T.R. & Rosenthal, H. (1979a). Osmotic responses of eggs and larvae of the Pacific herring to salinity and cadmium. Helgoländer Wiss. Meeresunters. 32, 508–38.CrossRefGoogle Scholar
Alderdice, D.F., Rosenthal, H. & Velsen, F.P. (1979b). Influence of salinity and cadmium on the volume of Pacific herring eggs. Helgol. Wiss. Meeresunters. 32, 163–78.CrossRefGoogle Scholar
Amaroli, A. (2013). Identification of aquaporins in eggs and early embryogenesis of the sea urchin Paracentrotus lividus. Acta Histochem. 115, 257–63.Google Scholar
Arnold, W.R., Cotsifas, J.S., Winter, A.R., Klinck, J.S., Smith, D.S. & Playle, R.C. (2007). Effects of using synthetic sea salts when measuring and modelling copper toxicity in saltwater toxicity tests. Environ. Toxicol. Chem. 26, 935–43.Google Scholar
Asturiano, J.F., Pérez, L., Garzón, D.L., Marco-Jiménez, F., Peñaranda, D.S., Vicente, J.S. & Jover, M. (2004). Physio-chemical characteristics of seminal plasma and development of media and methods for the cryopreservation of European eel sperm. Fish Physiol. Biochem. 30, 283–93.Google Scholar
Atkinson, M.J. & Bingman, C. (1997). Elemental composition of commercial sea salts. J. Aquaric. Aquat. Sci. 8, 3943.Google Scholar
Boëtius, I. & Boëtius, J. (1980). Experimental maturation of female silver eels, Anguilla anguilla. Estimates of fecundity and energy reserves for migration and spawning. Dana 1, 128.Google Scholar
Butts, I.A.E., Sørensen, S.R., Politis, S.N & Tomkiewicz, J. (2014). Standardization of fertilization protocols for the European eel. Aquaculture 426–7, 913.Google Scholar
Cerdà, D.J., Fabra, M. & Raldúa, D. (2007). Physiological and molecular basis of fish oocyte hydration. In Babin, P.J., Cerdà, D.J. & Lubzens, E. (eds), The Fish Oocyte. The Netherlands: Springer, pp. 349–96.Google Scholar
Cerdà, J. & Finn, R.N. (2010). Piscine aquaporins: an overview of recent advances. J. Exp. Zool. Part Ecol. Genet. Physiol. 313A, 623–50.CrossRefGoogle Scholar
Chapman, R. (2006). A sea water equation of state calculator. APL Ocean Remote Sensing. [online]. Johns Hopkins University Applied Physics Laboratory. Accessed 10 March 2013 at: <http://fermi.jhuapl.edu/denscalc.html>.Google Scholar
Claw, K.G. & Swanson, W.J. (2012). Evolution of the egg: new findings and challenges. Annu. Rev. Genome Hum. Genet. 13, 109–25.Google Scholar
Coombs, S.H. (1981). A density-gradient column for determining the specific gravity of fish eggs, with particular reference to eggs of the mackerel Scomber scombrus . Mar. Biol. 63, 101–6.Google Scholar
Coombs, S.H., Boyra, G., Rueda, L.D., Uriarte, A., Santos, M., Conway, D.V.P. & Halliday, N.C. (2004). Buoyancy measurements and vertical distribution of eggs of sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus). Mar. Biol. 145, 959–70.Google Scholar
Coward, K., Bromage, N.R., Hibbitt, O. & Parrington, J. (2002). Gamete physiology, fertilization and egg activation in teleost fish. Rev. Fish Biol. Fish. 12, 3358.CrossRefGoogle Scholar
Davenport, J., Lønning, S. & Kjørsvik, E. (1981). Osmotic and structural changes during early development of eggs and larvae of the cod, Gadus morhua L. J. Fish Biol. 19, 317–31.Google Scholar
Dufour, S., Burzawa-Gerard, E., Belle, N.L., Sbaihi, M. & Vidal, B. (2003). Reproductive Endocrinology of the European Eel, Anguilla anguilla . In Aida, K., Tsukamoto, K. & Yamauchi, K. (eds), Eel Biology. Springer Japan, pp. 373–83.Google Scholar
Eddy, F.B. (1983). Formation of the perivitelline fluid in Atlantic salmon eggs (Salmo salar) in fresh-water and in solutions of metal-ions. Comp. Biochem. Physiol. Pharmacol. Toxicol. Endocrinol. 75, 14.Google Scholar
Evans, J.P. & Geffen, A.J. (1998). Male characteristics, sperm traits and reproductive success in winter-spawning Celtic Sea Atlantic herring, Clupea harengus. Mar. Biol. 132, 179–86.Google Scholar
Fabra, M., Raldúa, D., Power, D.M., Deen, P.M.T. & Cerdà, J. (2005). Marine fish egg hydration is aquaporin-mediated. Science 307, 545.Google Scholar
Finn, R.N. (2007). The physiology and toxicology of salmonid eggs and larvae in relation to water quality criteria. Aquat. Toxicol. 81, 337–54.Google Scholar
Fontaine, M., Bertrand, E., Lopez, E. & Callamand, O. (1964). Sur la maturation des organes génitaux de l’anguille femelle (Anguilla anguilla L.) et l’émission spontanée des oeufs en aquarium. CR Acad. Sci. Paris 259, 907–2.Google Scholar
Gallego, V., Martínez-Pastor, F., Mazzeo, I., Peñaranda, D.S., Herráez, M.P., Asturiano, J.F. & Pérez, L. (2014). Intracellular changes in Ca2+, K+ and pH after sperm motility activation in the European eel (Anguilla anguilla): preliminary results. Aquaculture 418–9, 155–8.CrossRefGoogle Scholar
Gallo, A. & Costantini, M. (2012). Glycobiology of reproductive processes in marine animals: the state of the art. Mar. Drugs 10, 2861–92.CrossRefGoogle ScholarPubMed
Govoni, J.J. & Forward, R.B.J. (2008). Buoyancy. In Finn, R.N. & Kapoor, B.G. (eds), Fish Larval Physiology. Enfield, NH, USA: Science Publishers, pp. 495521.Google Scholar
Hart, N.H. & Yu, S.-F. (1980). Cortical granule exocytosis and cell surface reorganization in eggs of Brachydanio rerio . J. Exp. Zool. 213, 137–59.Google Scholar
Heinsbroek, L.T.N., Støttrup, J.G., Jacobsen, C., Corraze, G., Kraiem, M.M., Holst, L.K., Tomkiewicz, J. & Kaushik, S.J. (2013). A review on broodstock nutrition of marine pelagic spawners: the curious case of the freshwater eels (Anguilla spp.). Aquac. Nutr. 19, 124.Google Scholar
Holliday, F.G.T. (1969). The effects of salinity on the eggs and larvae of teleosts. In Hoar, W.S. & Randall, D.J. (eds), Fish Physiology, Excretion, Ionic Regulation and Metabolism. New York: Academic Press Inc, pp. 293309.Google Scholar
Holliday, F.G.T. & Blaxter, J.H.S. (1960). The effects of salinity on the developing eggs and larvae of the herring. J. Mar. Biol. Assoc. UK 39, 591603.Google Scholar
Hovanec, T.A. & Coshland, J.L. (2004). A chemical analysis of select trace elements in synthetic sea salts and natural seawater. Sea Scope Aqua. Syst. 21, 118.Google Scholar
Iwamatsu, T. & Ito, S. (1986). Effects of microinjected cations on the early event of fertilization in the Medeka egg. Dev. Growth Diff. 28 303310 Google Scholar
Kennedy, J., Geffen, A.J. & Nash, R.D.M. (2007). Maternal influences on egg and larval characteristics of plaice (Pleuronectes platessa L.). J. Sea Res. 58, 6577.Google Scholar
Kjørsvik, E., Davenport, J. & Lönning, S. (1984). Osmotic changes during the development of eggs and larvae of the lumpsucker, Cydopterus lumpus L. J. Fish Biol. 24, 311– 21.CrossRefGoogle Scholar
Kjørsvik, E., Hoehne-Reitan, K. & Reitan, K.I. (2003). Egg and larval quality criteria as predictive measures for juvenile production in turbot (Scophthalmus maximus L.). Aquaculture 227, 920.Google Scholar
Kjørsvik, E., Mangor-Jensen, A. & Holmefjord, I. (1990). Egg quality in fishes. In Blaxter, J.H.S. & Southward, A.J. (eds). Advances in Marine Biology, pp. 71113. London: Academic Press.Google Scholar
Kokhnenko, S.V., Bezdenezhnykh, V.A. & Gorovaya, S.L. (1977). Maturation of the European eel (Anguilla anguilla) when artificially reared. J. Ichthyol. 17, 878–83.Google Scholar
Kroll, M.-M., Peck, M.A., Butts, I.A.E. & Trippel, E.A. (2013). Paternal effects on early life history traits in Northwest Atlantic cod, Gadus morhua . J. Appl. Ichthyol. 29, 623–9.Google Scholar
Laale, H.W. (1980). The perivitelline space and egg envelopes of bony fishes: A review. Copeia 1980, 210–26.Google Scholar
Li, X., Jenssen, E., & Fyhn, H.J. (1989). Effects of salinity on egg swelling in Atlantic salmon (Salmo salar). Aquaculture 76, 317–34.Google Scholar
Lønning, S., & Davenport, J. (1980). The swelling egg of the long rough dab, Hippoglossoides platessoides limandoides (Bloch). J. Fish Biol. 17, 359–78.Google Scholar
Morley, S.A., Batty, R.S., Geffen, A.J. & Tytler, P. (1999). Egg size manipulation: a technique for investigating maternal effects on the hatching characteristics of herring. J. Fish Biol. 55, 233–8.Google Scholar
Munk, P., Hansen, M.M., Maes, G.E., Nielsen, T.G., Castonguay, M., Riemann, L., Sparholt, H., Als, T.D., Aarestrup, K., Andersen, N.G. & Bachler, M. (2010). Oceanic fronts in the Sargasso Sea control the early life and drift of Atlantic eels. Proc. R. Soc. B Biol. Sci. 277, 3593–9.Google Scholar
Ohta, H., Kagawa, H., Tanaka, H., Okuzawa, K. & Hirose, K. (1996). Changes in fertilization and hatching rates with time after ovulation induced by 17, 20β-dihydroxy-4-pregnen-3-one in the Japanese eel, Anguilla japonica . Aquaculture 139, 291301.CrossRefGoogle Scholar
Ohta, H., Kagawa, H., Tanaka, H. & Unuma, T. (2001). Control by the environmental concentration of ions of the potential for motility in Japanese eel spermatozoa. Aquaculture 198, 339–51.Google Scholar
Okamoto, T., Kurokawa, T., Gen, K., Murashita, K., Nomura, K., Kim, S.-K., Matsubara, H., Ohta, H. & Tanaka, H. (2009). Influence of salinity on morphological deformities in cultured larvae of Japanese eel, Anguilla japonica, at completion of yolk resorption. Aquaculture 293, 113–8.Google Scholar
Palstra, A.P., Cohen, E.G.H., Niemantsverdriet, P.R.W., van Ginneken, V.J.T. & Van den Thillart, G.E.E.J.M. (2005). Artificial maturation and reproduction of European silver eel: development of oocytes during final maturation. Aquaculture 249, 533–47.Google Scholar
Pankhurst, N.W. & Sorensen, P.W. (1984). Degeneration of the alimentary tract in sexually maturing European Anguilla anguilla (L.) and American eels Anguilla rostrata (LeSueur). Can. J. Zool. 62, 1143–9.CrossRefGoogle Scholar
Pedersen, B.H. (2003). Induced sexual maturation of the European eel Anguilla anguilla and fertilization of the eggs. Aquaculture 224, 323–38.Google Scholar
Peterson, R.H. & Martin-Robichaud, D.J. (1986). Perivitelline and vitelline potentials in teleost eggs as influenced by ambient ionic-strength, natal salinity and electrode electrolyte – and the influence of these potentials on cadmium dynamics within the egg. Can. J. Fish. Aquat. Sci. 43, 1445–50.Google Scholar
Seoka, M., Yamada, S., Iwata, Y., Yanagisawa, T., Nakagawa, T. & Kumai, H. (2003). Differences in the biochemical content of buoyant and non-buoyant eggs of the Japanese eel, Anguilla japonica . Aquaculture 216, 355–62.Google Scholar
Shephard, K.L. (1989). An analysis of the ion-exchange characteristics of fish-egg chorions. Fish Physiol. Biochem. 6, 395401.CrossRefGoogle ScholarPubMed
Shields, R.J., Brown, N.P. & Bromage, N.R. (1997). Blastomere morphology as a predictive measure of fish egg viability. Aquaculture 155, 112.Google Scholar
Sørensen, S.R., Skov, P.V., Lauesen, P., Tomkiewicz, J., Bossier, P., & De Schryver, P. (2014). Microbial interference and potential control in culture of European eel (Anguilla anguilla) embryos and larvae. Aquaculture 426, 18.Google Scholar
Sørensen, S.R., Gallego, V., Pérez, L., Butts, I.A.E., Tomkiewicz, J. & Asturiano, J.F. (2013). Evaluation of methods to determine sperm density for the European eel, Anguilla anguilla . Reprod. Dom. Anim. 48, 936–44.CrossRefGoogle ScholarPubMed
Stricker, S.A. (1999). Comparative biology of calcium signalling during fertilization and egg activation in animals. Dev. Biol. 211, 157–76.CrossRefGoogle ScholarPubMed
Thorsen, A. & Fyhn, H.J. (1996). Final oocyte maturation in vivo and in vitro in marine fishes with pelagic eggs; yolk protein hydrolysis and free amino acid content. J. Fish Biol. 48, 11951209.Google Scholar
Tomkiewicz, J. (2012). Reproduction of European Eel in Aquaculture (REEL), Consolidation and New Production Methods. DTU Aqua Research Report No. 249–2012. Technical University of Denmark.Google Scholar
Tomkiewicz, J. & Jarlbæk, H. (2008). Kunstig reproduktion af ål: ROE II og IIB. [Artificial reproduction of eel: ROEII and IIB.] DTU Aqua Research Report No. 180–08 (in Danish). Technical University of Denmark. pp. 182.Google Scholar
Tsukamoto, K. (2009). Positive buoyancy in eel leptocephali: an adaptation for life in the ocean surface layer. Mar. Biol. 156, 835–46.Google Scholar
Tsukamoto, K., Chow, S., Otake, T., Kurogi, H., Mochioka, N., Miller, M.J., Aoyama, J., Kimura, S., Watanabe, S., Yoshinaga, T., Shinoda, A., Kuroki, M., Oya, M., Watanabe, T., Hata, K., Ijiri, S., Kazeto, Y., Nomura, K. & Tanaka, H. (2011). Oceanic spawning ecology of freshwater eels in the western North Pacific. Nat. Commun. 2, 179.Google Scholar
Villani, P. & Lumare, F. (1975). Nota Sull’accrescimento ovarico indotto in Anguilla anguilla L. [The ovarial growth induced in Anguilla anguilla L.] Investig. Pesq. 39, 187198.Google Scholar
Webb, S.E. & Miller, A.L. (2013). Ca2+ signaling during activation and fertilization in the eggs of teleost fish. Cell Calcium 53, 2431.Google Scholar
Yoshinaga, T., Miller, M.J., Yokouchi, K., Otake, T., Kimura, S., Aoyama, J., Watanabe, S., Shinoda, A., Oya, M., Miyazaki, S., Zenimoto, K., Sudo, R., Takahashi, T., Ahn, H., Manabe, R., Hagihara, S., Morioka, H., Itakura, H., Machida, M., Ban, K., Shiozaki, M., Ai, B. & Tsukamoto, K. (2011). Genetic identification and morphology of naturally spawned eggs of the Japanese eel Anguilla japonica collected in the western North Pacific. Fish. Sci. 77, 983– 92.Google Scholar