Hostname: page-component-76dd75c94c-5fx6p Total loading time: 0 Render date: 2024-04-30T07:21:50.665Z Has data issue: false hasContentIssue false

Has the concept of polyspermy prevention been invented in the laboratory?

Published online by Cambridge University Press:  29 January 2024

Brian Dale*
Affiliation:
Centre for Assisted Fertilization, Naples, 80123, Italy
*
Corresponding author: Brian Dale; Email: briandaledsc@gmail.com

Summary

There is no evidence, nor need, for a fast block to polyspermy in animal oocytes. The idea that oocytes have evolved a mechanism to allow the entry of one spermatozoon and repel all others has, however, gained consensus over the last century. The main culprit is the sea urchin, which has been used for over a century in in vitro studies of the fertilization process. Images of sea urchin oocytes with thousands of sperm attached to the surface are commonplace in textbooks and appeal to the nature of the reader implying an intriguing surface mechanism of sperm selection despite these oocytes being fixed for photography (Figure 1). The abundance of gametes in this marine invertebrate and the ease of experimentation have given us the possibility to elucidate many aspects of the mechanism of fertilization, but has also led to ongoing controversies in reproductive biology, one being polyspermy prevention. Kinetic experiments by Rothschild and colleagues in the 1950s led to the hypothesis of a fast partial block to polyspermy in sea urchin oocytes that reduced the probability of a second spermatozoon from entering the oocyte by 1/20th. In the 1970s, Jaffe and colleagues suggested, with circumstantial evidence, that this partial block was due to the sperm-induced depolarization of the oocyte plasma membrane. However, the fate of supernumerary spermatozoa is determined well before the plasma membrane of the oocyte depolarizes. Transmembrane voltage does not serve to regulate sperm entry. Scholastic texts have inadvertently promulgated this concept across the animal kingdom with no logical correlation or experimentation and, as of today, a molecular mechanism to regulate sperm entry in oocytes has not been identified.

Type
Review Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This paper is dedicated to the memory of Professor Loredana DiMatteo.

References

Bakst, M., Wishart, G. and Brillard, J. (1994). Oviductal sperm selection transport and storage in poultry. Poultry Science Review, 5, 117143.Google Scholar
Busa, W. B., Ferguson, J. E., Joseph, S. K., Williamson, J. R. and Nuccitelli, R. (1985). Activation of frog (Xenopus laevis) eggs by inositol trisphosphate. I. Characterization of Ca2+ release from intracellular stores. Journal of Cell Biology, 101(2), 677682. doi: 10.1083/jcb.101.2.677 CrossRefGoogle ScholarPubMed
Campanella, C. (1975). The site of spermatozoon entrance in the unfertilized egg of Discoglossus pictus (Anura): an electron microscope study. Biology of Reproduction, 12(4), 439447. doi: 10.1095/biolreprod12.4.439 CrossRefGoogle Scholar
Dale, B. (1983). Fertilization in animals. Edward Arnold.Google Scholar
Dale, B. (2014). Is the idea of a fast block to polyspermy based on artifact? Biochemical and Biophysical Research Communications, 450(3), 11591165. doi: 10.1016/j.bbrc.2014.03.157.CrossRefGoogle ScholarPubMed
Dale, B. (2016). Achieving monospermy or preventing polyspermy? Research and Reports in Biology, 7, 4757. doi: 10.2147/RRB.S84085 CrossRefGoogle Scholar
Dale, B. (2018a) Polyspermy Encyclopedia of Reproduction (2nd edn) Skinner, M. (Ed.). Elsevier.Google Scholar
Dale, B. (2018b). Fertilization: The Beginning of Life. Cambridge University Press.CrossRefGoogle Scholar
Dale, B. and de Santis, A. (1981). Maturation and fertilization of the sea urchin oocyte: An electrophysiological study. Developmental Biology, 85(2), 474484. doi: 10.1016/0012-1606(81)90278-5 CrossRefGoogle ScholarPubMed
Dale, B. and DeFelice, L. J. (2011). Polyspermy prevention: Facts and Artifacts. Journal of Assisted Reproduction and Genetics, 28(3), 199207. doi: 10.1007/s10815-010-9513-5 CrossRefGoogle ScholarPubMed
Dale, B. and Monroy, A. (1981). How is polyspermy prevented? Gamete Research, 4(2), 151169. doi: 10.1002/mrd.1120040209 CrossRefGoogle Scholar
Dale, B., Wilding, M., Coppola, G. and Tosti, E. (2010). How do spermatozoa activate oocytes?. Reproductive Biomedicine Online, 21(1), 13. doi: 10.1016/j.rbmo.2010.02.015 CrossRefGoogle ScholarPubMed
Deguchi, R., Shirakawa, H., Oda, S., Mohri, T. and Miyazaki, S. (2000). Spatiotemporal analysis of Ca2+ waves in relation to the sperm entry site and animal–vegetal axis during Ca2+ oscillations in fertilized mouse eggs. Developmental Biology, 218(2), 299313. doi: 10.1006/dbio.1999.9573.CrossRefGoogle Scholar
Fankhauser, G. (1925). Analyse der physiologischen Polyspermie desTriton-Eies auf Grund von Schnürungsexperimenten. Wilhelm Roux’ Archiv für Entwicklungsmechanik Der Organismen, 105(3), 501580. doi: 10.1007/BF02080914 CrossRefGoogle Scholar
Fankhauser, G. (1932). Cytological studies on egg fragments of the salamander triton. II. The history of the supernumerary sperm nuclei in normal fertilization and cleavage of fragments containing the egg nucleus. Journal of Experimental Zoology, 62(1), 185235. doi: 10.1002/jez.1400620108 CrossRefGoogle Scholar
Fankhauser, G. (1948). The organization of the amphibian egg during fertilization and cleavage. Annals of the New York Academy of Sciences, 49(Art 5), 684708. doi: 10.1111/j.1749-6632.1948.tb30961.x CrossRefGoogle ScholarPubMed
Gilkey, J. C., Jaffe, L. F., Ridgway, E. B. and Reynolds, G. T. (1978). A free calcium wave traverses the activating egg of the medaka, Oryzias latipes . Journal of Cell Biology, 76(2), 448466. doi: 10.1083/jcb.76.2.448 CrossRefGoogle ScholarPubMed
Harper, E. (1904). The fertilization and early development of the pigeon’s egg. American Journal of Anatomy, 3, 349386.CrossRefGoogle Scholar
Hemmings, N. and Birkhead, T. R. (2015). Polyspermy in birds: sperm numbers and embryo survival. Proceedings. Biological Sciences, 282(1818), 20151682. doi: 10.1098/rspb.2015.1682.Google ScholarPubMed
Hinkley, R. E., Wright, B. D. and Lynn, J. W. (1986). Rapid visual detection of sperm-egg fusion using the DNA-specific fluorochrome Hoechst 33342. Developmental Biology, 118(1), 148154. doi: 10.1016/0012-1606(86)90082-5.CrossRefGoogle ScholarPubMed
Jaffe, L. A. (1980). Electrical polyspermy block in sea urchins: Nicotine and low sodium experiments. Development, Growth and Differentiation, 22(3), 503507. doi: 10.1111/j.1440-169X.1980.00503.x CrossRefGoogle ScholarPubMed
Jaffe, L. A. (1976). Fast block to polyspermy in sea urchin eggs is electrically mediated. Nature, 261(5555), 6871. doi: 10.1038/261068a0 CrossRefGoogle ScholarPubMed
Lefevre, G. and Jonsson, U. B. (1962). Sperm transfer, storage, displacement, and utilization in Drosophila melanogaster . Genetics, 47(12), 17191736. doi: 10.1093/genetics/47.12.1719 CrossRefGoogle ScholarPubMed
Levitan, D. R. (1993). The importance of sperm limitation to the evolution of egg size in marine invertebrates. American Naturalist, 141(4), 517536. doi: 10.1086/285489 CrossRefGoogle Scholar
Levitan, D. R. and Petersen, C. (1995). Sperm limitation in the sea. Trends in Ecology and Evolution, 10(6), 228231. doi: 10.1016/S0169-5347(00)89071-0 CrossRefGoogle ScholarPubMed
Limatola, N., Vasilev, F., Chun, J. T. and Santella, L. (2019). Sodium-mediated fast electrical depolarization does not prevent polyspermic fertilization in Paracentrotus lividus eggs. Zygote, 27(4), 241249. doi: 10.1017/S0967199419000364 CrossRefGoogle Scholar
Lynn, J. W., McCulloh, D. H. and Chambers, E. L. (1988). Voltage clamp studies of fertilization in sea urchin eggs. II. Current patterns in relation to sperm entry, nonentry, and activation. Developmental Biology, 128(2), 305323. doi: 10.1016/0012-1606(88)90294-1.CrossRefGoogle ScholarPubMed
Miyazaki, S., Hashimoto, N., Yoshimoto, Y., Kishimoto, T., Igusa, Y. and Hiramoto, Y. (1986). Temporal and spatial dynamics of the periodic increase in intracellular free calcium at fertilization of golden hamster eggs. Developmental Biology, 118(1), 259267. doi: 10.1016/0012-1606(86)90093-X.CrossRefGoogle ScholarPubMed
Monroy, A. (1963). The chemistry and physiology of fertilization. New York. Holt Rinehart and Winston. Google Scholar
Parker, G. (1970). Sperm competition and its evolutionary consequences in the insects. Biological Reviews, 45, 525567.CrossRefGoogle Scholar
Ridgeway, E., Gilkey, J. and Jaffe, L. (1997). Free calcium increases explosively in activating medaka eggs. Proceedings of the National Academy of Sciences of the United States of America, 74, 623627.CrossRefGoogle Scholar
Rothschild, L. (1954). Polyspermy. Quarterly Review of Biology, 29(4), 332342. doi: 10.1086/400393 CrossRefGoogle ScholarPubMed
Rothschild, L. and Swann, M. M. (1951). The fertilization reaction in the sea urchin. The probability of a successful sperm-egg collision. Journal of Experimental Biology, 28(3), 403416. doi: 10.1242/jeb.28.3.403 CrossRefGoogle Scholar
Rothschild, L. and Swann, M. M. (1952). The fertilization reaction in the sea urchin. The block to polyspermy. Journal of Experimental Biology, 29(3), 469483. doi: 10.1242/jeb.29.3.469 CrossRefGoogle Scholar
Shen, S. S. and Steinhardt, R. A. (1984). Time and voltage windows for reversing the electrical block to fertilization. Proceedings of the National Academy of Sciences of the United States of America, 81(5), 14361439. doi: 10.1073/pnas.81.5.1436 CrossRefGoogle ScholarPubMed
Snook, R. R., Hosken, D. J. and Karr, T. L. (2011). The biology and evolution of polyspermy: Insights from cellular and functional studies of sperm and centrosomal behaviour in the fertilized egg. Reproduction, 142(6), 779792. doi: 10.1530/REP-11-0255 CrossRefGoogle ScholarPubMed
Stricker, S. A. (1999). Comparative biology of calcium signalling during fertilization and egg activation in animals. Developmental Biology, 211(2), 157176. doi: 10.1006/dbio.1999.9340 CrossRefGoogle ScholarPubMed
Swann, K. and Ozil, J. P. (1994). Dynamics of the calcium signal that triggers mammalian egg activation. International Review of Cytology, 152, 183222. doi: 10.1016/s0074-7696(08)62557-7 CrossRefGoogle ScholarPubMed
Tosti, E. and Ménézo, Y. (2016). Gamete activation; basic knowledge and clinical application. Human Reproduction Update, 22(4), 420439. doi: 10.1093/humupd/dmw014 CrossRefGoogle Scholar
Van Blerkom, J. and Caltrider, K. (2013). Sperm attachment and penetration in the human oocyte: A possible aetiology of fertilization failure involving the organization of oolemmal lipid raft microdomains influenced by the ****Ψm of subplasmalemmal mitochondria. Reproductive Biomedicine Online, 27(6), 690701. doi: 10.1016/j.rbmo.2013.09.011 CrossRefGoogle Scholar
Van Blerkom, J. and Zimmermann, S. (2016). Ganglioside-enriched microdomains define an oolemma that is functionally polarized with respect to fertilizability in the mouse. Reproductive Biomedicine Online, 33(4), 458475. doi: 10.1016/j.rbmo.2016.06.029 CrossRefGoogle ScholarPubMed
Ward, S. and Carroll, J. (1979). Fertilization and sperm competition in the nematode Caenorhabditis elegans . Developments in Biologicals, 73, 304321.CrossRefGoogle ScholarPubMed
Wilding, M., Marino, M., Monfrecola, V. and Dale, B. (2000). Meiosis associated calcium waves in ascidian oocytes are correlated with the position of the male centrosome. Zygote, 8(4), 285293. doi: 10.1017/s0967199400001088 CrossRefGoogle ScholarPubMed
Wozniak, K. L. and Carlson, A. E. (2020). Ion channels and signalling pathways used in the fast polyspermy block. Molecular Reproduction and Development, 87(3), 350357. doi: 10.1002/mrd.23168 CrossRefGoogle ScholarPubMed
Yamashita, M. (1998). Molecular mechanisms of meiotic maturation and arrest in fish and amphibian oocytes. Seminars in Cell and Developmental Biology, 9(5), 569579. doi: 10.1006/scdb.1998.0251 CrossRefGoogle ScholarPubMed
Yanagimachi, R., Cherr, G. and Matsubara, T. (2013). Sperm attractant in the micropyle region of fish and insect eggs. Biology of Reproduction, 88, 111.CrossRefGoogle ScholarPubMed
Yoshimoto, Y., Iwamatsu, T., Hirano, K. I. and Hiramoto, Y. (1986). The wave pattern of free calcium release upon fertilization in medaka and sand dollar eggs: (Ca2+ /fertilization/medaka/sand dollar/aequorin). Development, Growth and Differentiation, 28(6), 583596. doi: 10.1111/j.1440-169X.1986.00583.x CrossRefGoogle Scholar