Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-04-30T12:08:09.871Z Has data issue: false hasContentIssue false

Live birth derived from a markedly large polar body oocyte: a rare case report

Published online by Cambridge University Press:  15 April 2024

Yongxiang Liu
Affiliation:
Department of Reproductive Medicine, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
Xinliang Peng
Affiliation:
Department of Reproductive Medicine, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
Caifeng Liu
Affiliation:
Health Center of Chini Town, Huadu District, Guangzhou, Guangdong Province, People’s Republic of China
Shuting Zhang
Affiliation:
Department of Reproductive Medicine, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
Zhiwei Weng
Affiliation:
Department of Reproductive Medicine, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
Li Yu
Affiliation:
Department of Reproductive Medicine, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
Shaohu Zhou
Affiliation:
Department of Reproductive Medicine, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
Xuekun Huang*
Affiliation:
Department of Reproductive Medicine, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
*
Corresponding author: Xuekun Huang; Email: hxkun88@163.com

Abstract

Oocytes with excessively large first polar bodies (PB1) often occur in assisted reproductive procedures. Many times these oocytes are discarded without insemination and, as a result, the application of this portion of oocytes has scarcely been reported to date. Few studies have examined large PB1 oocytes in infertile women and have virtually entirely studied genetic variations for large PB1 oocyte abnormalities. Here, we describe an unusual case of a live birth from a remarkably large PB1 oocyte in a frozen embryo transfer (FET) cycle. This is the first instance of a successful live birth resulting from a PB1 oocyte with an extremely large polar body measuring 80 μM × 40 μM in size. The large PB1 oocyte was performed by an early rescue intracytoplasmic sperm injection (r-ICSI) and was formed into a blastocyst on day 5. Following FET, a healthy boy baby weighing 3100 g was finally delivered by caesarean section at 37 weeks and 5 days after conception. Additionally, there were no complications throughout the antenatal period or the perinatal phase of this following full-term delivery. In this study, it is revealed for the first time that a huge PB1 oocyte can be fertilized, resulting in the growth of a blastocyst, a subsequent pregnancy, and a live birth. This new information prompts us to reconsider the use of large PB1 oocytes. More insightful talks should be given attention to prevent the waste of embryos because not all oocytes with aberrant morphology are unavailable.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally to this study.

References

Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology (2011). The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Human Reproduction (Oxford, England), 26(6), 12701283. doi: 10.1093/humrep/der037 CrossRefGoogle Scholar
Bennabi, I., Terret, M. E. and Verlhac, M. H. (2016). Meiotic spindle assembly and chromosome segregation in oocytes. The Journal of Cell Biology, 215(5), 611619. doi: 10.1083/jcb.201607062 CrossRefGoogle ScholarPubMed
Cao, Q., Zhao, C., Wang, C., Cai, L., Xia, M., Zhang, X., Han, J., Xu, Y., Zhang, J., Ling, X., Ma, X. and Huo, R. (2021a). The recurrent mutation in PATL2 inhibits its degradation thus causing female infertility characterized by oocyte maturation defect through regulation of the Mos-MAPK pathway. Frontiers in Cell and Developmental Biology, 9, 628649. doi: 10.3389/fcell.2021.628649 CrossRefGoogle ScholarPubMed
Cao, T., Guo, J., Xu, Y., Lin, X., Deng, W., Cheng, L., Zhao, H., Jiang, S., Gao, M., Huang, J. and Xu, Y. (2021b). Two mutations in TUBB8 cause developmental arrest in human oocytes and early embryos. Reproductive Biomedicine Online, 43(5), 891898. doi: 10.1016/j.rbmo.2021.07.020 CrossRefGoogle ScholarPubMed
Cardona Maya, W. (2010). [World Health Organization manual for the processing of human semen-2010]. Actas Urologicas Españolas, 34(7), 577578. doi: 10.1016/j.acuro.2010.05.002 CrossRefGoogle ScholarPubMed
Chen, B., Li, B., Li, D., Yan, Z., Mao, X., Xu, Y., Mu, J., Li, Q., Jin, L., He, L., Kuang, Y., Sang, Q. and Wang, L. (2017). Novel mutations and structural deletions in TUBB8: Expanding mutational and phenotypic spectrum of patients with arrest in oocyte maturation, fertilization or early embryonic development. Human Reproduction, 32(2), 457464. doi: 10.1093/humrep/dew322 CrossRefGoogle ScholarPubMed
Choi, T., Fukasawa, K., Zhou, R., Tessarollo, L., Borror, K., Resau, J. and Vande Woude, G. F. (1996). The Mos/mitogen-activated protein kinase (MAPK) pathway regulates the size and degradation of the first polar body in maturing mouse oocytes. Proceedings of the National Academy of Sciences of the United States of America, 93(14), 70327035. doi: 10.1073/pnas.93.14.7032 CrossRefGoogle ScholarPubMed
Coticchio, G., Dal Canto, M., Mignini Renzini, M., Guglielmo, M. C., Brambillasca, F., Turchi, D., Novara, P. V. and Fadini, R. (2015). Oocyte maturation: Gamete-somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization. Human Reproduction Update, 21(4), 427454. doi: 10.1093/humupd/dmv011 CrossRefGoogle ScholarPubMed
Ebner, T., Yaman, C., Moser, M., Sommergruber, M., Feichtinger, O. and Tews, G. (2000). Prognostic value of first polar body morphology on fertilization rate and embryo quality in intracytoplasmic sperm injection. Human Reproduction, 15(2), 427430. doi: 10.1093/humrep/15.2.427 CrossRefGoogle ScholarPubMed
Eichenlaub-Ritter, U., Schmiady, H., Kentenich, H. and Soewarto, D. (1995). Recurrent failure in polar body formation and premature chromosome condensation in oocytes from a human patient: Indicators of asynchrony in nuclear and cytoplasmic maturation. Human Reproduction, 10(9), 23432349. doi: 10.1093/oxfordjournals.humrep.a136297 CrossRefGoogle ScholarPubMed
Feng, R., Sang, Q., Kuang, Y., Sun, X., Yan, Z., Zhang, S., Shi, J., Tian, G., Luchniak, A., Fukuda, Y., Li, B., Yu, M., Chen, J., Xu, Y., Guo, L., Qu, R., Wang, X., Sun, Z., Liu, M., et al. (2016). Mutations in TUBB8 and human oocyte meiotic arrest. The New England Journal of Medicine, 374(3), 223232. doi: 10.1056/NEJMoa1510791 CrossRefGoogle ScholarPubMed
Gardner, D. K. and Schoolcraft, W. B. (1999). Culture and transfer of human blastocysts. Current Opinion in Obstetrics and Gynecology, 11(3), 307311. doi: 10.1097/00001703-199906000-00013 CrossRefGoogle ScholarPubMed
Gitlin, S. A., Gibbons, W. E. and Gosden, R. G. (2003). Oocyte biology and genetics revelations from polar bodies. Reproductive Biomedicine Online, 6(4), 403409. doi: 10.1016/s1472-6483(10)62158-x CrossRefGoogle ScholarPubMed
Halvaei, I., Khalili, M. A., Soleimani, M. and Razi, M. H. (2011). Evaluating the role of first polar body morphology on rates of fertilization and embryo development in ICSI cycles. International Journal of Fertility and Sterility, 5(2), 110115.Google ScholarPubMed
Liu, Z., Xi, Q., Zhu, L., Yang, X., Jin, L., Wang, J., Zhang, T., Zhou, X., Zhang, D., Peng, X., Luo, Y., Li, Z. and Zhang, X. (2021). TUBB8 mutations cause female infertility with large polar body oocyte and fertilization failure. Reproductive Sciences, 28(10), 29422950. doi: 10.1007/s43032-021-00633-z CrossRefGoogle ScholarPubMed
Matzuk, M. M. and Lamb, D. J. (2008). The biology of infertility: Research advances and clinical challenges. Nature Medicine, 14(11), 11971213. doi: 10.1038/nm.f.1895 CrossRefGoogle ScholarPubMed
Mehlmann, L. M. (2005). Stops and starts in mammalian oocytes: Recent advances in understanding the regulation of meiotic arrest and oocyte maturation. Reproduction, 130(6), 791799. doi: 10.1530/rep.1.00793 CrossRefGoogle ScholarPubMed
Moor, R. M., Dai, Y., Lee, C. and Fulka, J. Jr. (1998). Oocyte maturation and embryonic failure. Human Reproduction Update, 4(3), 223236. doi: 10.1093/humupd/4.3.223 CrossRefGoogle ScholarPubMed
Morita, Y. and Tilly, J. L. (1999). Oocyte apoptosis: Like sand through an hourglass. Developmental Biology, 213(1), 117. doi: 10.1006/dbio.1999.9344 CrossRefGoogle ScholarPubMed
Namgoong, S. and Kim, N. H. (2018). Meiotic spindle formation in mammalian oocytes: Implications for human infertility. Biology of Reproduction, 98(2), 153161. doi: 10.1093/biolre/iox145 CrossRefGoogle ScholarPubMed
Navarro, P. A., de Araújo, M. M., de Araújo, C. M., Rocha, M., dos Reis, R. and Martins, W. (2009). Relationship between first polar body morphology before intracytoplasmic sperm injection and fertilization rate, cleavage rate, and embryo quality. International Journal of Gynaecology and Obstetrics, 104(3), 226229. doi: 10.1016/j.ijgo.2008.11.008 CrossRefGoogle ScholarPubMed
Pan, Z. N., Liu, J. C., Ju, J. Q., Wang, Y. and Sun, S. C. (2022). LRRK2 regulates actin assembly for spindle migration and mitochondrial function in mouse oocyte meiosis. Journal of Molecular Cell Biology, 14(1). doi: 10.1093/jmcb/mjab079 CrossRefGoogle ScholarPubMed
Park, J. Y., Su, Y. Q., Ariga, M., Law, E., Jin, S. L. and Conti, M. (2004). EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science, 303(5658), 682684. doi: 10.1126/science.1092463 CrossRefGoogle ScholarPubMed
Plachot, M. and Mandelbaum, J. (1990). Oocyte maturation, fertilization and embryonic growth in vitro . British Medical Bulletin, 46(3), 675694. doi: 10.1093/oxfordjournals.bmb.a072424 CrossRefGoogle ScholarPubMed
Sanders, J. R. and Jones, K. T. (2018). Regulation of the meiotic divisions of mammalian oocytes and eggs. Biochemical Society Transactions, 46(4), 797806. doi: 10.1042/BST20170493 CrossRefGoogle ScholarPubMed
Sun, T. Y., Wang, H. Y., Kwon, J. W., Yuan, B., Lee, I. W., Cui, X. S. and Kim, N. H. (2017). Centriolin, a centriole-appendage protein, regulates peripheral spindle migration and asymmetric division in mouse meiotic oocytes. Cell Cycle, 16(19), 17741780. doi: 10.1080/15384101.2016.1264544 CrossRefGoogle ScholarPubMed
Verlhac, M. H., Lefebvre, C., Guillaud, P., Rassinier, P. and Maro, B. (2000). Asymmetric division in mouse oocytes: With or without Mos. Current Biology, 10(20), 13031306. doi: 10.1016/s0960-9822(00)00753-3 CrossRefGoogle ScholarPubMed
Verlinsky, Y., Lerner, S., Illkevitch, N., Kuznetsov, V., Kuznetsov, I., Cieslak, J. and Kuliev, A. (2003). Is there any predictive value of first polar body morphology for embryo genotype or developmental potential? Reproductive Biomedicine Online, 7(3), 336341. doi: 10.1016/s1472-6483(10)61874-3 CrossRefGoogle ScholarPubMed
Wang, Z. B., Schatten, H. and Sun, Q. Y. (2011). Why is chromosome segregation error in oocytes increased with maternal aging? Physiology (Bethesda), 26(5), 314325. doi: 10.1152/physiol.00020.2011 Google ScholarPubMed
Zhang, C. H., Wang, Z. B., Quan, S., Huang, X., Tong, J. S., Ma, J. Y., Guo, L., Wei, Y. C., Ouyang, Y. C., Hou, Y., Xing, F. Q. and Sun, Q. Y. (2011). GM130, a cis-Golgi protein, regulates meiotic spindle assembly and asymmetric division in mouse oocyte. Cell Cycle, 10(11), 18611870. doi: 10.4161/cc.10.11.15797 CrossRefGoogle ScholarPubMed
Zhang, Y. L., Liu, X. M., Ji, S. Y., Sha, Q. Q., Zhang, J. and Fan, H. Y. (2015). ERK1/2 activities are dispensable for oocyte growth but are required for meiotic maturation and pronuclear formation in mouse. Journal of Genetics and Genomics, 42(9), 477485. doi: 10.1016/j.jgg.2015.07.004 CrossRefGoogle Scholar
Zhang, Y. L., Zheng, W., Ren, P., Jin, J., Hu, Z., Liu, Q., Fan, H. Y., Gong, F., Lu, G. X., Lin, G., Zhang, S. and Tong, X. (2022). Biallelic variants in MOS cause large polar body in oocyte and human female infertility. Human Reproduction, 37(8), 19321944. doi: 10.1093/humrep/deac120 CrossRefGoogle ScholarPubMed
Zheng, W., Hu, H., Zhang, S., Xu, X., Gao, Y., Gong, F., Lu, G. and Lin, G. (2021). The comprehensive variant and phenotypic spectrum of TUBB8 in female infertility. Journal of Assisted Reproduction and Genetics, 38(9), 22612272. doi: 10.1007/s10815-021-02219-9 CrossRefGoogle ScholarPubMed
Zhou, W., Fu, L., Sha, W., Chu, D. and Li, Y. (2016). Relationship of polar bodies morphology to embryo quality and pregnancy outcome. Zygote, 24(3), 401407. doi: 10.1017/S0967199415000325 CrossRefGoogle ScholarPubMed
Zou, Y. J., Shan, M. M., Wang, H. H., Pan, Z. N., Pan, M. H., Xu, Y., Ju, J. Q. and Sun, S. C. (2021). RAB14 GTPase is essential for actin-based asymmetric division during mouse oocyte maturation. Cell Proliferation, 54(9), e13104. doi: 10.1111/cpr.13104 CrossRefGoogle ScholarPubMed
Supplementary material: File

Liu et al. supplementary material

Liu et al. supplementary material
Download Liu et al. supplementary material(File)
File 1.2 MB