Hostname: page-component-76dd75c94c-qmf6w Total loading time: 0 Render date: 2024-04-30T09:23:07.879Z Has data issue: false hasContentIssue false

Melatonin protects oogenesis from hypobaric hypoxia-induced fertility damage in mice

Published online by Cambridge University Press:  11 March 2024

Ruina Zhang
Affiliation:
School of Biological and Pharmaceutical Engineering West Anhui University, Lu’an, 237012, China Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu’an, 237012, China
Cong Liu
Affiliation:
Center for Reproductive Medicine Renmin Hospital of Wuhan University, Wuhan, 430000, China
Daolun Yu
Affiliation:
School of Biological and Pharmaceutical Engineering West Anhui University, Lu’an, 237012, China
Deyong She
Affiliation:
School of Biological and Pharmaceutical Engineering West Anhui University, Lu’an, 237012, China
Yan Yu
Affiliation:
School of Biological and Pharmaceutical Engineering West Anhui University, Lu’an, 237012, China
Yongping Cai*
Affiliation:
College of Life Science, Anhui Agricultural University, Hefei, 230000, China
Naifu Chen*
Affiliation:
School of Biological and Pharmaceutical Engineering West Anhui University, Lu’an, 237012, China Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu’an, 237012, China
*
Corresponding authors: Yongping Cai; Email: swkx12@ahau.edu.cn; Naifu Chen; Email: cnf505@126.com
Corresponding authors: Yongping Cai; Email: swkx12@ahau.edu.cn; Naifu Chen; Email: cnf505@126.com

Summary

Environmental hypoxia adversely affects reproductive health in humans and animals at high altitudes. Therefore, how to alleviate the follicle development disorder caused by hypoxia exposure and to improve the competence of fertility in plateau non-habituated female animals are important problems to be solved urgently. In this study, a hypobaric hypoxic chamber was used for 4 weeks to simulate hypoxic conditions in female mice, and the effects of hypoxia on follicle development, proliferation and apoptosis of granulosa cells, reactive oxygen species (ROS) levels in MII oocyte and 2-cell rate were evaluated. At the same time, the alleviating effect of melatonin on hypoxic exposure-induced oogenesis damage was evaluated by feeding appropriate amounts of melatonin daily under hypoxia for 4 weeks. The results showed that hypoxia exposure significantly increased the proportion of antral follicles in the ovary, the number of proliferation and apoptosis granulosa cells in the follicle, and the level of ROS in MII oocytes, eventually led to the decline of oocyte quality. However, these defects were alleviated when melatonin was fed under hypoxia conditions. Together, these findings suggest that hypoxia exposure impaired follicular development and reduced oocyte quality, and that melatonin supplementation alleviated the fertility reduction induced by hypoxia exposure.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally to this work.

References

Adam-Vizi, V. (2005). Production of reactive oxygen species in brain mitochondria: Contribution by electron transport chain and non-electron transport chain sources. Antioxidants and Redox Signaling, 7(9–10), 11401149. doi: 10.1089/ars.2005.7.1140 Google Scholar
Amaral, F. G. D. and Cipolla-Neto, J. (2018). A brief review about melatonin, a pineal hormone. Archives of Endocrinology and Metabolism, 62(4), 472479. doi: 10.20945/2359-3997000000066 CrossRefGoogle ScholarPubMed
Ambrogi, M., Dall’Acqua, P. C., Rocha-Frigoni, N., Leão, B. and Mingoti, G. Z. (2017). Transporting bovine oocytes in a medium supplemented with different macromolecules and antioxidants: Effects on nuclear and cytoplasmic maturation and embryonic development in vitro . Reproduction in Domestic Animals, 52(3), 409421. doi: 10.1111/rda.12923 Google Scholar
Bastani, S., Akbarzadeh, M., Rastgar Rezaei, Y., Farzane, A., Nouri, M., Mollapour Sisakht, M., Fattahi, A., Akbarzadeh, M. and Reiter, R. J. (2021). Melatonin as a therapeutic agent for the inhibition of hypoxia-induced tumor progression: A description of possible mechanisms involved. International Journal of Molecular Sciences, 22(19), 10874. doi: 10.3390/ijms221910874 CrossRefGoogle ScholarPubMed
Berlinguer, F., Leoni, G. G., Succu, S., Spezzigu, A., Madeddu, M., Satta, V., Bebbere, D., Contreras-Solis, I., Gonzalez-Bulnes, A. and Naitana, S. (2009). Exogenous melatonin positively influences follicular dynamics, oocyte developmental competence and blastocyst output in a goat model. Journal of Pineal Research, 46(4), 383391. doi: 10.1111/j.1600-079X.2009.00674.x CrossRefGoogle Scholar
Boucret, L., Chao de la Barca, J. M., Morinière, C., Desquiret, V., Ferré-L’Hôtellier, V., Descamps, P., Marcaillou, C., Reynier, P., Procaccio, V. and May-Panloup, P. (2015). Relationship between diminished ovarian reserve and mitochondrial biogenesis in cumulus cells. Human Reproduction, 30(7), 16531664. doi: 10.1093/humrep/dev114 CrossRefGoogle ScholarPubMed
Chen, M., Shen, H., Zhu, L., Yang, H., Ye, P., Liu, P., Gu, Y. and Chen, S. (2019). Berberine attenuates hypoxia-induced pulmonary arterial hypertension via bone morphogenetic protein and transforming growth factor-β signaling. Journal of Cellular Physiology, 234(10), 1748217493. doi: 10.1002/jcp.28370 CrossRefGoogle ScholarPubMed
Cheng, J. C., Fang, L., Li, Y., Wang, S., Li, Y., Yan, Y., Jia, Q., Wu, Z., Wang, Z., Han, X. and Sun, Y. P. (2020). Melatonin stimulates aromatase expression and estradiol production in human granulosa-lutein cells: Relevance for high serum estradiol levels in patients with ovarian hyperstimulation syndrome. Experimental and Molecular Medicine, 52(8), 13411350. doi: 10.1038/s12276-020-00491-w CrossRefGoogle ScholarPubMed
Chuffa, L. G., Fioruci-Fontanelli, B. A., Mendes, L. O., Ferreira Seiva, F. R., Martinez, M., Fávaro, W. J., Domeniconi, R. F., Pinheiro, P. F., Delazari Dos Santos, L. and Martinez, F. E. (2015). Melatonin attenuates the TLR4-mediated inflammatory response through MyD88- and TRIF-dependent signaling pathways in an in vivo model of ovarian cancer. BMC Cancer, 15, 34. doi: 10.1186/s12885-015-1032-4 CrossRefGoogle Scholar
Cipolla-Neto, J., Amaral, F. G., Soares, J. M. Jr, Gallo, C. C., Furtado, A., Cavaco, J. E., Gonçalves, I., Santos, C. R. A. and Quintela, T. (2022). The crosstalk between melatonin and sex steroid hormones. Neuroendocrinology, 112(2), 115129. doi: 10.1159/000516148 Google Scholar
Coimbra-Costa, D., Alva, N., Duran, M., Carbonell, T. and Rama, R. (2017). Oxidative stress and apoptosis after acute respiratory hypoxia and reoxygenation in rat brain. Redox Biology, 12, 216225. doi: 10.1016/j.redox.2017.02.014 Google Scholar
Connolly, J. M., Kane, M. T., Quinlan, L. R., Dockery, P. and Hynes, A. C. (2017). Corrigendum to: Hypoxia limits mouse follicle growth in vitro . Reproduction, Fertility, and Development, 29(2), 431. doi: 10.1071/RD14471_CO Google Scholar
Edson, M. A., Nagaraja, A. K. and Matzuk, M. M. (2009). The mammalian ovary from genesis to revelation. Endocrine Reviews, 30(6), 624712. doi: 10.1210/er.2009-0012 Google Scholar
Estaras, M., Martinez, R., Garcia, A., Ortiz-Placin, C., Iovanna, J. L., Santofimia-Castaño, P. and Gonzalez, A. (2022). Melatonin modulates metabolic adaptation of pancreatic stellate cells subjected to hypoxia. Biochemical Pharmacology, 202, 115118. doi: 10.1016/j.bcp.2022.115118 Google Scholar
Farias, J. G., Puebla, M., Acevedo, A., Tapia, P. J., Gutierrez, E., Zepeda, A., Calaf, G., Juantok, C. and Reyes, J. G. (2010). Oxidative stress in rat testis and epididymis under intermittent hypobaric hypoxia: Protective role of ascorbate supplementation. Journal of Andrology, 31(3), 314321. doi: 10.2164/jandrol.108.007054 Google Scholar
Gonzalez-Candia, A., Veliz, M., Carrasco-Pozo, C., Castillo, R. L., Cárdenas, J. C., Ebensperger, G., Reyes, R. V., Llanos, A. J. and Herrera, E. A. (2019). Antenatal melatonin modulates an enhanced antioxidant/pro–oxidant ratio in pulmonary hypertensive newborn sheep. Redox Biology, 22, 101128. doi: 10.1016/j.redox.2019.101128 Google Scholar
Gonzaléz-Candia, A., Arias, P. V., Aguilar, S. A., Figueroa, E. G., Reyes, R. V., Ebensperger, G., Llanos, A. J. and Herrera, E. A. (2021). Melatonin reduces oxidative stress in the right ventricle of newborn sheep gestated under chronic hypoxia. Antioxidants, 10(11). doi: 10.3390/antiox10111658 CrossRefGoogle ScholarPubMed
Guo, S., Yang, J., Qin, J., Qazi, I. H., Pan, B., Zang, S., Lv, T., Deng, S., Fang, Y. and Zhou, G. (2021). Melatonin promotes in vitro maturation of vitrified-warmed mouse germinal vesicle oocytes, potentially by reducing oxidative stress through the Nrf2 pathway. Animals (Basel), 11(8), 2324. doi: 10.3390/ani11082324 Google Scholar
Hadek, R. (1965). The structure of the mammalian egg. International Review of Cytology, 18, 2971. doi: 10.1016/s0074-7696(08)60551-3 Google Scholar
Han, L., Wang, H., Li, L., Li, X., Ge, J., Reiter, R. J. and Wang, Q. (2017). Melatonin protects against maternal obesity-associated oxidative stress and meiotic defects in oocytes via the SIRT3-SOD2-dependent pathway. Journal of Pineal Research, 63(3). doi: 10.1111/jpi.12431 CrossRefGoogle ScholarPubMed
Hartinger, S., Tapia, V., Carrillo, C., Bejarano, L. and Gonzales, G. F. (2006). Birth weight at high altitudes in Peru. International Journal of Gynaecology and Obstetrics, 93(3), 275281. doi: 10.1016/j.ijgo.2006.02.023 CrossRefGoogle ScholarPubMed
He, Y., Deng, H., Jiang, Z., Li, Q., Shi, M., Chen, H. and Han, Z. (2016). Effects of melatonin on follicular atresia and granulosa cell apoptosis in the porcine. Molecular Reproduction and Development, 83(8), 692700. doi: 10.1002/mrd.22676 Google Scholar
Jiang, Y., Shen, M., Chen, Y., Wei, Y., Tao, J. and Liu, H. (2021a). Melatonin represses mitophagy to protect mouse granulosa cells from oxidative damage. Biomolecules, 11(7), 968. doi: 10.3390/biom11070968 CrossRefGoogle ScholarPubMed
Jiang, Y., Shi, H., Liu, Y., Zhao, S. and Zhao, H. (2021b). Applications of melatonin in female reproduction in the context of oxidative stress. Oxidative Medicine and Cellular Longevity, 2021, 6668365. doi: 10.1155/2021/6668365 CrossRefGoogle ScholarPubMed
Jin, J. X., Sun, J. T., Jiang, C. Q., Cui, H. D., Bian, Y., Lee, S., Zhang, L., Lee, B. C. and Liu, Z. H. (2022). Melatonin regulates lipid metabolism in porcine cumulus–oocyte complexes via the melatonin receptor 2. Antioxidants, 11(4), 687. doi: 10.3390/antiox11040687 CrossRefGoogle ScholarPubMed
Kim, E. H., Ridlo, M. R., Lee, B. C. and Kim, G. A. (2020). Melatonin-Nrf2 signaling activates peroxisomal activities in porcine cumulus cell-oocyte complexes. Antioxidants, 9(11), 1080. doi: 10.3390/antiox9111080 CrossRefGoogle ScholarPubMed
Lim, J. and Luderer, U. (2011). Oxidative damage increases and antioxidant gene expression decreases with aging in the mouse ovary. Biology of Reproduction, 84(4), 775782. doi: 10.1095/biolreprod.110.088583 CrossRefGoogle ScholarPubMed
Lim, M., Thompson, J. G. and Dunning, K. R. (2021). HYPOXIA AND REPRODUCTIVE HEALTH: Hypoxia and ovarian function: Follicle development, ovulation, oocyte maturation. Reproduction, 161(1), F33F40. doi: 10.1530/REP-20-0509 Google Scholar
Liu, Y., Yang, Y., Li, W., Ao, H., Zhang, Y., Zhou, R. and Li, K. (2019a). Effects of melatonin on the synthesis of estradiol and gene expression in pig granulosa cells. Journal of Pineal Research, 66(2), e12546. doi: 10.1111/jpi.12546 Google Scholar
Liu, Y. J., Ji, D. M., Liu, Z. B., Wang, T. J., Xie, F. F., Zhang, Z. G., Wei, Z. L., Zhou, P. and Cao, Y. X. (2019b). Melatonin maintains mitochondrial membrane potential and decreases excessive intracellular Ca2+ levels in immature human oocytes. Life Sciences, 235, 116810. doi: 10.1016/j.lfs.2019.116810 CrossRefGoogle ScholarPubMed
Ma, L., Wang, L., Gao, H., Liu, N., Zheng, Y., Gao, Y., Liu, S. and Jiang, Z. (2019). Hypoxia limits the growth of bovine follicles in vitro by inhibiting estrogen receptor α. Animals (Basel), 9(8), 551. doi: 10.3390/ani9080551 Google Scholar
Monniaux, D. (2016). Driving folliculogenesis by the oocyte-somatic cell dialog: Lessons from genetic models. Theriogenology, 86(1), 4153. doi: 10.1016/j.theriogenology.2016.04.017 Google Scholar
Moore, L. G., Niermeyer, S. and Zamudio, S. (1998). Human adaptation to high altitude: Regional and life-cycle perspectives. American Journal of Physical Anthropology, Suppl 27, 2564. doi: 10.1002/(sici)1096-8644(1998)107:27+<25::aid-ajpa3>3.0.co;2-l3.0.CO;2-L>CrossRefGoogle Scholar
Moore, L. G., Zamudio, S., Zhuang, J., Sun, S. and Droma, T. (2001). Oxygen transport in Tibetan women during pregnancy at 3,658 m. American Journal of Physical Anthropology, 114(1), 4253. doi: 10.1002/1096-8644(200101)114:1<42::AID-AJPA1004>3.0.CO;2-BGoogle Scholar
Parraguez, V. C., Atlagich, M., Díaz, R., Bruzzone, M. E., Behn, C. and Raggi, L. A. (2005). Effect of hypobaric hypoxia on lamb intrauterine growth: Comparison between high- and low-altitude native ewes. Reproduction, Fertility, and Development, 17(5), 497505. doi: 10.1071/rd04060 CrossRefGoogle ScholarPubMed
Parraguez, V. H., Atlagich, M., Díaz, R., Cepeda, R., González, C., De los Reyes, M., Bruzzone, M. E., Behn, C. and Raggi, L. A. (2006). Ovine placenta at high altitudes: Comparison of animals with different times of adaptation to hypoxic environment. Animal Reproduction Science, 95(1–2), 151157. doi: 10.1016/j.anireprosci.2005.11.003 Google Scholar
Parraguez, V. H., Urquieta, B., Pérez, L., Castellaro, G., De los Reyes, M., Torres-Rovira, L., Aguado-Martínez, A., Astiz, S. and González-Bulnes, A. (2013 ). Fertility in a high-altitude environment is compromised by luteal dysfunction: The relative roles of hypoxia and oxidative stress. Reproductive Biology and Endocrinology: RB&E, 11, 24. doi: 10.1186/1477-7827-11-24 CrossRefGoogle Scholar
Parraguez, V. H., Diaz, F., Cofré, E., Urquieta, B., De Los Reyes, M., Astiz, S. and Gonzalez-Bulnes, A. (2014). Fertility of a high-altitude sheep model is compromised by deficiencies in both preovulatory follicle development and plasma LH availability. Reproduction in Domestic Animals, 49(6), 977984. doi: 10.1111/rda.12417 CrossRefGoogle ScholarPubMed
Poeggeler, B., Saarela, S., Reiter, R. J., Tan, D. X., Chen, L. D., Manchester, L. C. and Barlow-Walden, L. R. (1994). Melatonin—A highly potent endogenous radical scavenger and electron donor: New aspects of the oxidation chemistry of this indole accessed in vitro . Annals of the New York Academy of Sciences, 738, 419420. doi: 10.1111/j.1749-6632.1994.tb21831.x Google Scholar
Ramanathan, L., Gozal, D. and Siegel, J. M. (2005). Antioxidant responses to chronic hypoxia in the rat cerebellum and pons. Journal of Neurochemistry, 93(1), 4752. doi: 10.1111/j.1471-4159.2004.02988.x Google Scholar
Redding, G. P., Bronlund, J. E. and Hart, A. L. (2008). Theoretical investigation into the dissolved oxygen levels in follicular fluid of the developing human follicle using mathematical modelling. Reproduction, Fertility, and Development, 20(3), 408417. doi: 10.1071/rd07190 Google Scholar
Reiter, R. J., Tamura, H., Tan, D. X. and Xu, X. Y. (2014). Melatonin and the circadian system: Contributions to successful female reproduction. Fertility and Sterility, 102(2), 321328. doi: 10.1016/j.fertnstert.2014.06.014 CrossRefGoogle ScholarPubMed
Reiter, R. J., Tan, D. X., Rosales-Corral, S., Galano, A., Zhou, X. J. and Xu, B. (2018). Mitochondria: Central organelles for melatonin’s antioxidant and anti-aging actions. Molecules, 23(2), 509. doi: 10.3390/molecules23020509 Google Scholar
Shen, M., Lin, F., Zhang, J., Tang, Y., Chen, W. K. and Liu, H. (2012). Involvement of the up-regulated FoxO1 expression in follicular granulosa cell apoptosis induced by oxidative stress. The Journal of Biological Chemistry, 287(31), 2572725740. doi: 10.1074/jbc.M112.349902 CrossRefGoogle ScholarPubMed
Shen, M., Cao, Y., Jiang, Y., Wei, Y. and Liu, H. (2018). Melatonin protects mouse granulosa cells against oxidative damage by inhibiting FOXO1-mediated autophagy: Implication of an antioxidation-independent mechanism. Redox Biology, 18, 138157. doi: 10.1016/j.redox.2018.07.004 Google Scholar
Shen, Q., Liu, Y., Li, H. and Zhang, L. (2021). Effect of mitophagy in oocytes and granulosa cells on oocyte quality. Biology of Reproduction, 104(2), 294304. doi: 10.1093/biolre/ioaa194 Google Scholar
Tam, K. K. Y., Russell, D. L., Peet, D. J., Bracken, C. P., Rodgers, R. J., Thompson, J. G. and Kind, K. L. (2010). Hormonally regulated follicle differentiation and luteinization in the mouse is associated with hypoxia inducible factor activity. Molecular and Cellular Endocrinology, 327(1–2), 4755. doi: 10.1016/j.mce.2010.06.008 CrossRefGoogle ScholarPubMed
Tanabe, M., Tamura, H., Taketani, T., Okada, M., Lee, L., Tamura, I., Maekawa, R., Asada, H., Yamagata, Y. and Sugino, N. (2015). Melatonin protects the integrity of granulosa cells by reducing oxidative stress in nuclei, mitochondria, and plasma membranes in mice. The Journal of Reproduction and Development, 61(1), 3541. doi: 10.1262/jrd.2014-105 Google Scholar
Tao, J. L., Zhang, X., Zhou, J. Q., Li, C. Y., Yang, M. H., Liu, Z. J., Zhang, L. L., Deng, S. L., Zhang, L., Shen, M., Liu, G. S. and Liu, H. L. (2021). Melatonin alleviates hypoxia-induced apoptosis of granulosa cells by reducing ROS and activating MTNR1B-PKA-caspase8/9 pathway. Antioxidants, 10(2), 184. doi: 10.3390/antiox10020184 CrossRefGoogle ScholarPubMed
Tong, J., Sheng, S., Sun, Y., Li, H., Li, W. P., Zhang, C. and Chen, Z. J. (2017). Melatonin levels in follicular fluid as markers for IVF outcomes and predicting ovarian reserve. Reproduction, 153(4), 443451. doi: 10.1530/REP-16-0641 Google Scholar
Turrens, J. F. (2003). Mitochondrial formation of reactive oxygen species. The Journal of Physiology, 552(2), 335344. doi: 10.1113/jphysiol.2003.049478 CrossRefGoogle ScholarPubMed
Xu, S. R., Wei, P., Yang, Q. L., Jia, G. X., Ma, S. K., Yang, Q. E., Jun, Z. and Zhang, R. N. (2020). Transcriptome analysis revealed key signaling networks regulating ovarian activities in the domestic yak. Theriogenology, 147, 5056. doi: 10.1016/j.theriogenology.2020.02.023 Google Scholar
Zhang, X., Chen, Y., Li, H., Chen, B., Liu, Z., Wu, G., Li, C., Li, R., Cao, Y., Zhou, J., Shen, M., Liu, H. and Tao, J. (2022). Sulforaphane acts through NFE2L2 to prevent hypoxia-induced apoptosis in porcine granulosa cells via activating antioxidant defenses and mitophagy. Journal of Agricultural and Food Chemistry, 70(26), 80978110. doi: 10.1021/acs.jafc.2c01978 Google Scholar
Zhu, T., Guan, S., Lv, D., Zhao, M., Yan, L., Shi, L., Ji, P., Zhang, L. and Liu, G. (2021). Melatonin modulates lipid metabolism in porcine cumulus-–oocyte complex via its receptors. Frontiers in Cell and Developmental Biology, 9, 648209. doi: 10.3389/fcell.2021.648209 CrossRefGoogle ScholarPubMed
Zou, H., Chen, B., Ding, D., Gao, M., Chen, D., Liu, Y., Hao, Y., Zou, W., Ji, D., Zhou, P., Wei, Z., Cao, Y. and Zhang, Z. (2020). Melatonin promotes the development of immature oocytes from the COH cycle into healthy offspring by protecting mitochondrial function. Journal of Pineal Research, 68(1), e12621. doi: 10.1111/jpi.12621 CrossRefGoogle ScholarPubMed