Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-02T11:16:11.109Z Has data issue: false hasContentIssue false

Partial inhibition of nitric oxide synthase activity stimulates the nuclear maturation progression of bovine cumulus–oocyte complex in vitro in the presence of hemisections of the follicular walls

Published online by Cambridge University Press:  15 May 2020

Diego Fernando Dubeibe
Affiliation:
Laboratório de Reprodução e Melhoramento Genético Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro – RJ, Cep 28013-602, Brazil.
Maria Clara Caldas-Bussiere*
Affiliation:
Laboratório de Reprodução e Melhoramento Genético Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro – RJ, Cep 28013-602, Brazil.
Valter Luiz Maciel Jr
Affiliation:
Laboratório de Reprodução e Melhoramento Genético Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro – RJ, Cep 28013-602, Brazil.
Wlaisa Sampaio
Affiliation:
Laboratório de Reprodução e Melhoramento Genético Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro – RJ, Cep 28013-602, Brazil.
Paulo B.D. Gonçalves
Affiliation:
Laboratório de Biotecnologia e Reprodução Animal, Universidade Federal de Santa Maria – UFSM, Santa Maria, Rio Grande do Sul-RS, Cep 97105-900, Brazil.
Matheus P. De Cesaro
Affiliation:
Laboratório de Biotecnologia e Reprodução Animal, Universidade Federal de Santa Maria – UFSM, Santa Maria, Rio Grande do Sul-RS, Cep 97105-900, Brazil.
Celia Raquel Quirino
Affiliation:
Laboratório de Reprodução e Melhoramento Genético Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro – RJ, Cep 28013-602, Brazil.
Márcia R. Faes
Affiliation:
Laboratório de Reprodução e Melhoramento Genético Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro – RJ, Cep 28013-602, Brazil.
Carla S. Paes de Carvalho
Affiliation:
Laboratório de Reprodução e Melhoramento Genético Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro – RJ, Cep 28013-602, Brazil.
*
Author for correspondence: Maria Clara Caldas-Bussiere. Laboratório de Reprodução e Melhoramento Genético Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro-RJ, Cep 28013-602, Brazil. Tel: +55 22 27397285. E-mail: mariaclaracaldasbussiere@gmail.com

Summary

This study aimed to assess the effects of the inhibition of nitric oxide synthase (NOS) on events that modulate bovine in vitro oocyte maturation. Cumulus–oocyte complexes (COCs) were cultured with hemisections (HSs) of the follicular walls in a maturation medium supplemented with different concentrations (0.1–10.0 mM) of Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME). Controls consisted of COCs cultured in the presence (+HSs) or absence of HSs (–HSs) with no additional l-NAME supplementation. The following parameters were assessed: oocyte nuclear maturation stage; cumulus cell (CC) membrane integrity; nitrate/nitrite, progesterone, and estradiol concentrations in the culture medium at 22 h of cultivation; and the concentrations of cGMP and cAMP in COCs during the first hour of maturation. The addition of 1.0 mM l-NAME increased the percentage of oocytes that reached metaphase II (MII) and the percentage of intact CCs (P < 0.05). All l-NAME concentrations reduced the nitrate/nitrite concentrations (P < 0.05), but none affected steroid concentrations compared with control +HSs (P > 0.05). The addition of 1.0 mM l-NAME reduced cGMP concentrations at 3 h and increased cAMP concentrations in the first hour of culture (P < 0.05). Our findings suggest that the NOS/NO/cGMP pathway participates in meiosis progression (MI to MII) of the bovine oocytes matured in vitro in the presence of hemisections of the follicular walls. Lastly, the mechanisms that lead to the progression of meiosis after NOS inhibition do not involve changes in steroid production.

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Basini, G, Baratta, M, Ponderato, N, Bussolati, S and Tamanini, C (1998). Is nitric oxide an autocrine modulator of bovine granulosa cell function? Reprod Fertil Dev 10, 471–8.Google ScholarPubMed
Bilodeau-Goeseels, S (2007). Effects of manipulating the nitric oxide/cyclic GMP pathway on bovine oocyte meiotic resumption in vitro. Theriogenology 68, 693701.CrossRefGoogle ScholarPubMed
Bilodeau, S, Fortier, MA and Sirard, MA (1993). Effect of adenylate cyclase stimulation on meiotic resumption and cyclic AMP content of zona-free and cumulus-enclosed bovine oocytes in vitro. J Reprod Fertil 97, 511.CrossRefGoogle ScholarPubMed
Bleach, EC, Glencross, RG, Feist, SA, Groome, NP and Knight, PG (2001). Plasma inhibin A in heifers: relationship with follicle dynamics, gonadotropins, and steroids during the estrous cycle and after treatment with bovine follicular fluid. Biol Reprod 64, 743–52.CrossRefGoogle ScholarPubMed
Botigelli, RC, Schwarz, KL, Zaffalon, FG, Del Collado, M, Castro, FC, Fernandes, H and Leal, CLV (2017). Influence of nitric oxide and phosphodiesterases during in vitro maturation of bovine oocytes on meiotic resumption and embryo production. Zygote 25, 321–30.CrossRefGoogle ScholarPubMed
De Cesaro, M, Trois, R, Gutierrez, K, Siqueira, L, Rigo, M, Glanzner, W, Oliveira, J and Gonçalves, P (2013). The functional role of oxytocin in the induction of oocyte meiotic resumption in cattle. Reprod Domest Anim 48, 844–9.CrossRefGoogle ScholarPubMed
Del Collado, M, Andrade, GM, Meirelles, FV, Silveira, JC and Perecin, F (2018). Contributions from the ovarian follicular environment to oocyte function. Anim Reprod 15, 261270.CrossRefGoogle Scholar
Denninger, JW and Marletta, MA (1999). Guanylate cyclase and the.NO/cGMP signaling pathway. Biochim Biophys Acta 1411(2–3), 334–50.CrossRefGoogle Scholar
Dubeibe, DF, Caldas-Bussiere, MC, Maciel, VL, Sampaio, WV, Quirino, CR, Gonçalves, PBD, De Cesaro, MP, Faes, MR and Paes de Carvalho, CSP (2017). L-Arginine affects the IVM of cattle cumulus–oocyte complexes. Theriogenology 88, 134–44.CrossRefGoogle ScholarPubMed
Eppig, JJ and Downs, MS (1984). Chemical signals that regulate maturation. Biol Reprod 30, 111.CrossRefGoogle Scholar
Faes, MR, Caldas-Bussiere, MC, Viana, KS, Dias, BL, Costa, FR and Escocard, RM (2009). Nitric oxide regulates steroid synthesis by bovine antral granulosa cells in a chemically defined medium. Anim Reprod Sci 110, 222–36.CrossRefGoogle Scholar
Fair, T and Lonergan, P (2012). The role of progesterone in oocyte acquisition of developmental competence. Reprod Domest Anim 47(Suppl 4), 142–7.CrossRefGoogle ScholarPubMed
Francis, SH, Blount, MA and Corbin, JD (2011). Mammalian cyclic nucleotide phosphodiesterases: Molecular mechanisms and physiological functions. Physiol Rev 91, 651–90.CrossRefGoogle ScholarPubMed
Ignarro, LJ (2000). Nitric Oxide: Biology and Pathobiology. Nitric Oxide. first ed. Academic Press, Cambridge.Google Scholar
Leal, ACMS, Caldas-Bussiere, MC, Paes de Carvalho, CS, Viana, KS and Quirino, CR (2009). Role of nitric oxide on quality of freshly ejaculated bull spermatozoa during heparin-induced in vitro capacitation. Anim Reprod Sci 116, 3849.CrossRefGoogle ScholarPubMed
Leibfried, L and First, NL (1979). Characterization of bovine follicular oocytes and their ability to mature. J Anim Sci 48, 7686.CrossRefGoogle Scholar
Luciano, AM, Modina, S, Vassena, R, Milanesi, E, Lauria, A and Gandolfi, F (2004). Role of intracellular cyclic adenosine 3,5-monophosphate concentration and oocyte–cumulus cells communications on the acquisition of the developmental competence during in vitro maturation of bovine oocyte. Biol Reprod 70, 465–72.Google ScholarPubMed
Luciano, AM, Lodde, V, Beretta, MS, Colleoni, S, Lauria, A and Modina, S (2005). Developmental capability of denuded bovine oocyte in a co-culture system with intact cumulus–oocyte complexes: role of cumulus cells, cyclic adenosine 3,5-monophosphate, and glutathione. Mol Reprod Dev 71, 389–97.CrossRefGoogle Scholar
Matta, SGC, Caldas-Bussiere, MC, Viana, KS and Quirino, CR (2002). Efeito de diferentes concentrações do inibidor da síntese de óxido nítrico na maturação nuclear in vitro de oócitos bovinos. [Effect of different concentrations of nitric oxide synthesis inhibitor on in vitro nuclear maturation of bovine oocytes.] Rev Bras Reprod Anim 26, 149–51.Google Scholar
Matta, SGC, Caldas-Bussiere, MC, Viana, KS, Faes, MR, Paes de Carvalho, CS, Dias, BL and Quirino, CR (2009). Effect of inhibition of synthesis of inducible nitric oxide synthase-derived nitric oxide by aminoguanidine on the in vitro maturation of oocyte–cumulus complexes of cattle. Anim Reprod Sci 111, 189201.CrossRefGoogle ScholarPubMed
McDonald, JH (2014). Handbook of Biological Statistics, 3rd edn. Baltimore, Maryland, USA: Sparky House Publishing.Google Scholar
Moncada, S, Palmer, RMJ and Higgs, EA (1991). Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43, 109–42.Google ScholarPubMed
Nakamura, Y, Yamagata, Y, Sugino, N, Takayama, H and Kato, H (2002). Nitric oxide inhibits oocyte meiotic maturation. Biol Reprod 67, 1588–92.CrossRefGoogle ScholarPubMed
Pandey, AN, Tripathi, A, PremKumar, KV, Shrivastav, TG and Chaube, SK (2010). Reactive oxygen and nitrogen species during meiotic resumption from diplotene arrest in mammalian oocytes. J Cell Biochem 111, 521–8.CrossRefGoogle ScholarPubMed
Ricart-Jané, D, Llobera, M and López-Tejero, MD (2002). Anticoagulants and other preanalytical factors interfere in plasma nitrate/nitrite quantification by the Griess method. Nitric Oxide 6, 178–85.CrossRefGoogle ScholarPubMed
Richard, FJ and Sirard, MA (1996). Effects of follicular cells on oocyte maturation. I: Effects of follicular hemisections on bovine oocyte maturation in vitro. Biol Reprod 54, 1621.CrossRefGoogle ScholarPubMed
Romero-Aguirregomezcorta, J, Santa, ÁP, García-Vázquez, FA, Coy, P and Matás, C (2014). Nitric oxide synthase (NOS) inhibition during porcine in vitro maturation modifies oocyte protein S-nitrosylation and in vitro fertilization. PLoS One 26, 117.Google Scholar
Rubbo, H, Darley-Usmar, V and Freeman, BA (1996). Nitric oxide regulation of tissue free radical injury. Chem Res Toxicol 9, 809–20.CrossRefGoogle ScholarPubMed
SAS (2011). SAS/STAT 9.3 User’s Guide. User’s Guide. SAS Institute Inc., Cary, NC, p. 8640.Google Scholar
Sasseville, M, Albuz, FK, Côté, N, Guillemette, C, Gilchrist, RB and Richard, FJ (2009). Characterization of novel phosphodiesterases in the bovine ovarian follicle. Biol Reprod 81, 415–25.CrossRefGoogle ScholarPubMed
Schwarz, KRL, Pires, PRL, Adona, PR, De Bem, THC, and Leal, CLV (2008). Influence of nitric oxide during maturation on bovine oocyte meiosis and embryo development in vitro. Reprod Fertil Dev 20, 529–36.CrossRefGoogle ScholarPubMed
Schwarz, KRL, Pires, PRL, de Bem, THC, Adona, PR and Leal, CLV (2010). Consequences of nitric oxide synthase inhibition during bovine oocyte maturation on meiosis and embryo development. Reprod Domest Anim 45, 7580.CrossRefGoogle ScholarPubMed
Schwarz, KRL, Pires, PRL, Mesquita, LG, Chiaratti, MR and Leal, CLV (2014). Effect of nitric oxide on the cyclic guanosine monophosphate (cGMP) pathway during meiosis resumption in bovine oocytes. Theriogenology 81, 556–64.CrossRefGoogle ScholarPubMed
Sela-Abramovich, S, Galiani, D, Nevo, N and Dekel, N (2008). Inhibition of rat oocyte maturation and ovulation by nitric oxide: mechanism of action. Biol Reprod 78, 1111–8.CrossRefGoogle ScholarPubMed
Shaw, AW and Vosper, AJ (1977). Solubility of nitric oxide in aqueous and nonaqueous solvents. J Chem Soc 73, 1239–44.Google Scholar
Stuehr, DJ, Santolini, J, Wang, ZQ, Wei, CC and Adak, S (2004). Update on mechanism and catalytic regulation in the NO synthases. J Biol Chem 279, 36167–70.CrossRefGoogle ScholarPubMed
Tiwari, M and Chaube, SK (2017). Reduction of nitric oxide level results in maturation promoting factor destabilization during spontaneous meiotic exit from diplotene arrest in rat cumulus oocytes complexes cultured in vitro. Dev Growth Differ 59, 615–25.Google ScholarPubMed
Torres, NF, Caldas-Bussiere, MC, Nogueira, KS, Dubeibe, DF, Paes de Carvalho, CS, Dias, BL and Souza, CLM (2015). The role of iNOS/NO/cGMP pathway on in vitro maturation of bovine oocytes-cumulus complexes in presence of follicular wall hemisections. Anim Reprod 12, 596.Google Scholar
Tripathi, A, Khatun, S, Pandey, AN, Mishra, SK, Chaube, R, Shrivastav, TG and Chaube, SK (2009). Intracellular levels of hydrogen peroxide and nitric oxide in oocytes at various stages of meiotic cell cycle and apoptosis. Free Radical Res 43, 287–94.CrossRefGoogle ScholarPubMed
Tsafriri, A, Cao, X, Ashkenazi, H, Motola, S, Popliker, M and Pomerantz, SH (2005). Resumption of oocyte meiosis in mammals: On models, meiosis activating sterols, steroids and EGF-like factors. Mol Cell Endocrinol 234, 3745.CrossRefGoogle ScholarPubMed
Van Tol, H and Bevers, M (1998). Theca cells and theca-cell conditioned medium inhibit the progression of FSH-induced meiosis of bovine oocytes surrounded by cumulus cells connected to membrana granulosa. Mol Reprod Dev 51, 315–21.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Viana, KS, Caldas-Bussiere, MC, Matta, SGC, Faes, MR, Paes de Carvalho, CS and Quirino, CR (2007). Effect of sodium nitroprusside, a nitric oxide donor, on the in vitro maturation of bovine oocytes. Anim Reprod Sci 102, 217–27.CrossRefGoogle ScholarPubMed
Viana, KS, Caldas-Bussiere, MC, Paes de Carvalho, CS, Dias, BL, Faes, MR, Lanes, V, Quirino, CR and Escocard, R (2010). Morphologic and biochemistry alterations on bovine oocyte maturation in vitro with nitric oxide and its impact on embryo development. Reprod Fertil Dev 22, 336.CrossRefGoogle Scholar
Viana, KS, Caldas-Bussiere, MC, Paes de Carvalho, CS, Dias, BL, Lanes, VR and Quirino, CR (2011). Efeito de diferentes formas de cultivo na ação do óxido nítrico na maturação e na integridade da membrana plasmática de complexos cumulus-oócito em bovinos. Braz J Vet Res Anim Sci 48, 147–54.CrossRefGoogle Scholar
Zamberlam, G, Portela, V, de Oliveira, JFC, Gonçalves, PBD and Price, CA (2011). Regulation of inducible nitric oxide synthase expression in bovine ovarian granulosa cells. Mol Cell Endocrinol 335, 189–94.CrossRefGoogle ScholarPubMed
Supplementary material: Image

Dubeibe et al. supplementary material

Dubeibe et al. supplementary material 1

Download Dubeibe et al. supplementary material(Image)
Image 2.3 MB
Supplementary material: File

Dubeibe et al. supplementary material

Figure S1

Download Dubeibe et al. supplementary material(File)
File 247.4 KB