Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-16T16:47:36.107Z Has data issue: false hasContentIssue false

ZP3 and AIPL1 participate in GVBD of mouse oocytes by affecting the nuclear membrane localization and maturation of farnesylated prelamin A

Published online by Cambridge University Press:  19 December 2022

Zhen Jin
Affiliation:
Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China 310014
Qing-Mei Yang
Affiliation:
Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China 310014
Chen-Yu Xiao
Affiliation:
Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China 310014
Lei-Lei Gao*
Affiliation:
Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China 310014
*
Author for correspondence: Lei-Lei Gao. Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China 310014. E-mail: gaoleilei198802@126.com

Summary

The low maturation rate of oocytes is an important reason for female infertility and failure of assisted pregnancy. The germinal vesicle breakdown (GVBD) is a landmark event of oocyte maturation. In our previous studies, we found that zona pellucida 3 (ZP3) was strongly concentrated in the nuclear region of germinal vesicle (GV) oocytes and interacted with aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) and lamin A to promote GVBD. In the current study, we found that lamin A is mainly concentrated in the nuclear membrane. When ZP3 is knocked down, lamin A will be partially transferred to the nucleus of oocytes. The prelamin A is increased in both the nuclear membrane and nucleus, while phosphorylated lamin A (p-lamin A) is significantly reduced. AIPL1 was also proved to accumulate in the GV region of oocytes, and ZP3 deletion can significantly inhibit the aggregation of AIPL1 in the nuclear region. Similar to ZP3 knockdown, the absence of AIPL1 resulted in a decrease in the occurrence of GVBD, an increase in the amount of prelamin A, and a significant decrease in p-lamin A in oocytes developed in vitro. Finally, we propose the hypothesis that ZP3 can stabilize farnesylated prelamin A on the nuclear membrane of AIPL1, and promote its further processing into mature lamin A, therefore promoting the occurrence of GVBD. This study may be an important supplement for the mechanism of oocyte meiotic resumption and provide new diagnostic targets and treatment clues for infertility patients with oocyte maturation disorder.

Type
Research Article
Copyright
© Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally to this work.

References

Adhikari, D., Zheng, W., Shen, Y., Gorre, N., Ning, Y., Halet, G., Kaldis, P. and Liu, K. (2012). Cdk1, but not Cdk2, is the sole Cdk that is essential and sufficient to drive resumption of meiosis in mouse oocytes. Human Molecular Genetics, 21(11), 24762484. doi: 10.1093/hmg/dds061 CrossRefGoogle Scholar
Barrowman, J., Hamblet, C., George, C. M. and Michaelis, S. (2008). Analysis of prelamin A biogenesis reveals the nucleus to be a CaaX processing compartment. Molecular Biology of the Cell, 19(12), 53985408. doi: 10.1091/mbc.e08-07-0704 CrossRefGoogle ScholarPubMed
Chen, T., Bian, Y., Liu, X., Zhao, S., Wu, K., Yan, L., Li, M., Yang, Z., Liu, H., Zhao, H. and Chen, Z. J. (2017). A recurrent missense mutation in ZP3 causes empty follicle syndrome and female infertility. American Journal of Human Genetics, 101(3), 459465. doi: 10.1016/j.ajhg.2017.08.001 CrossRefGoogle ScholarPubMed
De Sandre-Giovannoli, A., Bernard, R., Cau, P., Navarro, C., Amiel, J., Boccaccio, I., Lyonnet, S., Stewart, C. L., Munnich, A., Le Merrer, M. and Lévy, N. (2003). Lamin a truncation in Hutchinson-Gilford progeria. Science, 300(5628), 2055. doi: 10.1126/science.1084125 CrossRefGoogle ScholarPubMed
Dechat, T., Pfleghaar, K., SenGupta, K., Shimi, T., Shumaker, D. K., Solimando, L. and Goldman, R. D. (2008). Nuclear lamins: Major factors in the structural organization and function of the nucleus and chromatin. Genes and Development, 22(7), 832853. doi: 10.1101/gad.1652708 CrossRefGoogle ScholarPubMed
Delbarre, E., Tramier, M., Coppey-Moisan, M., Gaillard, C., Courvalin, J. C. and Buendia, B. (2006). The truncated prelamin A in Hutchinson–Gilford progeria syndrome alters segregation of A-type and B-type lamin homopolymers. Human Molecular Genetics, 15(7), 11131122. doi: 10.1093/hmg/ddl026 CrossRefGoogle ScholarPubMed
Dessev, G., Iovcheva-Dessev, C., Bischoff, J. R., Beach, D. and Goldman, R. (1991). A complex containing p34cdc2 and cyclin B phosphorylates the nuclear lamin and disassembles nuclei of clam oocytes in vitro . Journal of Cell Biology, 112(4), 523533. doi: 10.1083/jcb.112.4.523 CrossRefGoogle ScholarPubMed
Dharmaraj, S., Leroy, B. P., Sohocki, M. M., Koenekoop, R. K., Perrault, I., Anwar, K., Khaliq, S., Devi, R. S., Birch, D. G., De Pool, E., Izquierdo, N., Van Maldergem, L., Ismail, M., Payne, A. M., Holder, G. E., Bhattacharya, S. S., Bird, A. C., Kaplan, J. and Maumenee, I. H. (2004). The phenotype of Leber congenital amaurosis in patients with AIPL1 mutations. Archives of Ophthalmology, 122(7), 10291037. doi: 10.1001/archopht.122.7.1029 CrossRefGoogle ScholarPubMed
Eriksson, M., Brown, W. T., Gordon, L. B., Glynn, M. W., Singer, J., Scott, L., Erdos, M. R., Robbins, C. M., Moses, T. Y., Berglund, P., Dutra, A., Pak, E., Durkin, S., Csoka, A. B., Boehnke, M., Glover, T. W. and Collins, F. S. (2003). Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature, 423(6937), 293298. doi: 10.1038/nature01629 CrossRefGoogle ScholarPubMed
Gao, L. L., Zhou, C. X., Zhang, X. L., Liu, P., Jin, Z., Zhu, G. Y., Ma, Y., Li, J., Yang, Z. X. and Zhang, D. (2017). ZP3 is required for germinal vesicle breakdown in mouse oocyte meiosis. Scientific Reports, 7, 41272. doi: 10.1038/srep41272 CrossRefGoogle ScholarPubMed
Gupta, S. K. (2018). The human egg’s zona Pellucida. Current Topics in Developmental Biology, 130, 379411. doi: 10.1016/bs.ctdb.2018.01.001 CrossRefGoogle ScholarPubMed
Hennekam, R. C. (2006). Hutchinson-Gilford progeria syndrome: Review of the phenotype. American Journal of Medical Genetics. Part A, 140(23), 26032624. doi: 10.1002/ajmg.a.31346.CrossRefGoogle ScholarPubMed
Hernandez, L., Roux, K. J., Wong, E. S., Mounkes, L. C., Mutalif, R., Navasankari, R., Rai, B., Cool, S., Jeong, J. W., Wang, H., Lee, H. S., Kozlov, S., Grunert, M., Keeble, T., Jones, C. M., Meta, M. D., Young, S. G., Daar, I. O., Burke, B.,... Stewart, C. L. (2010). Functional coupling between the extracellular matrix and nuclear lamina by Wnt signalling in progeria. Developmental Cell, 19(3), 413425. doi: 10.1016/j.devcel.2010.08.013 CrossRefGoogle ScholarPubMed
Larrieu, D., Britton, S., Demir, M., Rodriguez, R. and Jackson, S. P. (2014). Chemical inhibition of NAT10 corrects defects of laminopathic cells. Science, 344(6183), 527532. doi: 10.1126/science.1252651 CrossRefGoogle ScholarPubMed
Liu, B. and Zhou, Z. (2008). Lamin A/C, laminopathies and premature ageing. Histology and Histopathology, 23(6), 747763. doi: 10.14670/HH-23.747 Google ScholarPubMed
Liu, C., Litscher, E. S., Mortillo, S., Sakai, Y., Kinloch, R. A., Stewart, C. L. and Wassarman, P. M. (1996). Targeted disruption of the mZP3 gene results in production of eggs lacking a zona pellucida and infertility in female mice. Proceedings of the National Academy of Sciences of the United States of America, 93(11), 54315436. doi: 10.1073/pnas.93.11.5431 CrossRefGoogle ScholarPubMed
Liu, X., Bulgakov, O. V., Wen, X. H., Woodruff, M. L., Pawlyk, B., Yang, J., Fain, G. L., Sandberg, M. A., Makino, C. L. and Li, T. (2004). AIPL1, the protein that is defective in Leber congenital amaurosis, is essential for the biosynthesis of retinal rod cGMP phosphodiesterase. Proceedings of the National Academy of Sciences of the United States of America, 101(38), 1390313908. doi: 10.1073/pnas.0405160101 CrossRefGoogle ScholarPubMed
Majumder, A., Gopalakrishna, K. N., Cheguru, P., Gakhar, L. and Artemyev, N. O. (2013). Interaction of aryl hydrocarbon receptor-interacting protein-like 1 with the farnesyl moiety. Journal of Biological Chemistry, 288(29), 2132021328. doi: 10.1074/jbc.M113.476242 CrossRefGoogle ScholarPubMed
Mehsen, H., Boudreau, V., Garrido, D., Bourouh, M., Larouche, M., Maddox, P. S., Swan, A. and Archambault, V. (2018). PP2A-B55 promotes nuclear envelope reformation after mitosis in Drosophila . Journal of Cell Biology, 217(12), 41064123. doi: 10.1083/jcb.201804018 CrossRefGoogle ScholarPubMed
Meta, M., Yang, S. H., Bergo, M. O., Fong, L. G. and Young, S. G. (2006). Protein farnesyltransferase inhibitors and progeria. Trends in Molecular Medicine, 12(10), 480487. doi: 10.1016/j.molmed.2006.08.006 CrossRefGoogle ScholarPubMed
Moiseeva, O., Lopes-Paciencia, S., Huot, G., Lessard, F. and Ferbeyre, G. (2016) Permanent farnesylation of lamin A mutants linked to progeria impairs its phosphorylation at serine 22 during interphase. Aging, 8(2), 366381. doi: 10.18632/aging.100903 CrossRefGoogle ScholarPubMed
Peter, M., Nakagawa, J., Dorée, M., Labbé, J. C. and Nigg, E. A. (1990). In vitro disassembly of the nuclear lamina and M phase-specific phosphorylation of lamins by cdc2 kinase. Cell, 61(4), 591602. doi: 10.1016/0092-8674(90)90471-p CrossRefGoogle Scholar
Peter, M., Heitlinger, E., Häner, M., Aebi, U. and Nigg, E. A. (1991). Disassembly of in vitro formed lamin head-to-tail polymers by CDC2 kinase. EMBO Journal, 10(6), 15351544. doi: 10.1002/j.1460-2075.1991.tb07673.x CrossRefGoogle ScholarPubMed
Ramamurthy, V., Roberts, M., van den Akker, F., Niemi, G., Reh, T. A. and Hurley, J. B. (2003). AIPL1, a protein implicated in Leber’s congenital amaurosis, interacts with and aids in processing of farnesylated proteins. Proceedings of the National Academy of Sciences of the United States of America, 100(22), 1263012635. doi: 10.1073/pnas.2134194100 CrossRefGoogle ScholarPubMed
Ramamurthy, V., Niemi, G. A., Reh, T. A. and Hurley, J. B. (2004). Leber congenital amaurosis linked to AIPL1: A mouse model reveals destabilization of cGMP phosphodiesterase. Proceedings of the National Academy of Sciences of the United States of America, 101(38), 1389713902. doi: 10.1073/pnas.0404197101 CrossRefGoogle ScholarPubMed
Taimen, P., Pfleghaar, K., Shimi, T., Möller, D., Ben-Harush, K., Erdos, M. R., Adam, S. A., Herrmann, H., Medalia, O., Collins, F. S., Goldman, A. E. and Goldman, R. D. (2009). A progeria mutation reveals functions for lamin A in nuclear assembly, architecture, and chromosome organization. Proceedings of the National Academy of Sciences of the United States of America, 106(49), 2078820793. doi: 10.1073/pnas.0911895106 CrossRefGoogle ScholarPubMed
Wassarman, P. M. and Litscher, E. S. (2018). The mouse egg’s zona Pellucida. Current Topics in Developmental Biology, 130, 331356. doi: 10.1016/bs.ctdb.2018.01.003 CrossRefGoogle ScholarPubMed
Yang, S. H., Meta, M., Qiao, X., Frost, D., Bauch, J., Coffinier, C., Majumdar, S., Bergo, M. O., Young, S. G. and Fong, L. G. (2006). A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson-Gilford progeria syndrome mutation. Journal of Clinical Investigation, 116(8), 21152121. doi: 10.1172/JCI28968 CrossRefGoogle ScholarPubMed
Young, S. G., Meta, M., Yang, S. H. and Fong, L. G. (2006). Prelamin A farnesylation and progeroid syndromes. Journal of Biological Chemistry, 281(52), 3974139745. doi: 10.1074/jbc.R600033200 CrossRefGoogle ScholarPubMed