Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-30T15:17:27.131Z Has data issue: false hasContentIssue false

Extremophile hypolithic communities in the Vestfold Hills, East Antarctica

Published online by Cambridge University Press:  25 March 2024

Laurence J. Clarke
Affiliation:
Australian Antarctic Division, Kingston, Tasmania, Australia Institute for Marine and Antarctic Studies, University of Tasmania, Battery Point, Tasmania, Australia
Eric J. Raes
Affiliation:
Minderoo Foundation, Perth, Western Australia, Australia
Toby Travers
Affiliation:
Australian Antarctic Division, Kingston, Tasmania, Australia
Patti Virtue
Affiliation:
Australian Antarctic Division, Kingston, Tasmania, Australia Institute for Marine and Antarctic Studies, University of Tasmania, Battery Point, Tasmania, Australia CSIRO Environment, Castray Esplanade, Battery Point, Tasmania, Australia
Dana M. Bergstrom*
Affiliation:
Australian Antarctic Division, Kingston, Tasmania, Australia School of Atmospheric, Earth and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Johannesburg, South Africa

Abstract

The Vestfold Hills are a 400 km2, isolated ice-free oasis in eastern Antarctica featuring large areas with translucent quartz rocks that provide habitat for hypolithic microbial communities underneath. We used high-throughput DNA sequencing of 16S and 18S ribosomal RNA amplicons to characterize bacterial and eukaryotic hypolithic communities across the Vestfold Hills. We found high-level, local heterogeneity in community structure consistent with limited dispersal between hypoliths. Hypolithic communities were dominated by heterotrophic Bacteroidetes (mean bacterial relative read abundance: 56%) as well as Cyanobacteria (35%), with the eukaryote component often dominated by Chlorophyta (43%). Small but significant proportions of the variation in microbial community composition and function were explained by soil salinity (5–7%) and water availability (8–11%), with distinct taxa associated with different salinities and water availabilities. Furthermore, many inferred bacterial metabolic pathways were enriched in hypolithic communities from either dry or high-salinity sites. Vestfold Hills hypolithic habitats are likely to be local refuges for bacterial and eukaryotic diversity. Gradients in soil salinity and water availability across the Vestfold Hills, in addition to the number and diversity of lake types and fjords as potential source populations, may contribute to the observed variation in the extremophile, hypolithic microbial community composition.

Type
Biological Sciences
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Antarctic Science Ltd

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamson, D.A. & Pickard, J. 1986. Physiography and geomorphology of the Vestfold Hills. In Pickard, J. ed., Antarctic oasis: terrestrial environments and history of the Vestfold Hills. Sydney: Academic Press, 99140.Google Scholar
Aitchison, J. 1986. The statistical analysis of compositional data. London: Chapman and Hall, 460 pp.CrossRefGoogle Scholar
Albanese, D., Coleine, C., Rota-Stabelli, O., Onofri, S., Tringe, S.G., Stajich, J.E., et al. 2021. Pre-Cambrian roots of novel Antarctic cryptoendolithic bacterial lineages. Microbiome, 9, 63.CrossRefGoogle ScholarPubMed
Barbera, P., Kozlov, A.M., Czech, L., Morel, B., Darriba, D., Flouri, T. & Stamatakis, A. 2019. EPA-ng: massively parallel evolutionary placement of genetic sequences. Systematic Biology, 68, 365369.CrossRefGoogle ScholarPubMed
Bock, C., Jensen, M., Forster, D., Marks, S., Nuy, J., Psenner, R., et al. 2020. Factors shaping community patterns of protists and bacteria on a European scale. Environmental Microbiology, 22, 22432260.CrossRefGoogle ScholarPubMed
Bowman, J.P., McCammon, S.A., Brown, M.V., Nichols, D.S. & McMeekin, T.A. 1997. Diversity and association of psychrophilic bacteria in Antarctic sea ice. Applied and Environmental Microbiology, 63, 30683078.CrossRefGoogle ScholarPubMed
Bowman, J.S. 2018. Identification of microbial dark matter in Antarctic environments. Frontiers in Microbiology, 9, 3165.CrossRefGoogle ScholarPubMed
Broady, P.A. 1981. The ecology of sublithic terrestrial algae at the Vestfold Hills, Antarctica. British Phycological Journal, 16, 231240.CrossRefGoogle Scholar
Broady, P.A. 1986. Ecology and taxonomy of the terrestrial algae of the Vestfold Hills. In Pickard, J. ed., Antarctic oasis: terrestrial environments and history of the Vestfold Hills. Sydney: Academic Press, 165202.Google Scholar
Caporaso, J.G., Bittinger, K., Bushman, F.D., DeSantis, T.Z., Andersen, G.L. & Knight, R. 2009. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics, 26, 266267.CrossRefGoogle ScholarPubMed
Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335336.CrossRefGoogle ScholarPubMed
Cary, S.C., McDonald, I.R., Barrett, J.E. & Cowan, D.A. 2010. On the rocks: the microbiology of Antarctic Dry Valley soils. Nature Reviews Microbiology, 8, 129138.CrossRefGoogle ScholarPubMed
Caspi, R., Billington, R., Fulcher, C.A., Keseler, I.M., Kothari, A., Krummenacker, M., et al. 2018. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Research, 46, D633D639.CrossRefGoogle ScholarPubMed
Chan, Y., Van Nostrand, J.D., Zhou, J., Pointing, S.B. & Farrell, R.L. 2013. Functional ecology of an Antarctic Dry Valley. Proceedings of the National Academy of Sciences of the United States of America, 110, 89908995.CrossRefGoogle ScholarPubMed
Chown, S.L., Clarke, A., Fraser, C.I., Cary, S.C., Moon, K.L. & McGeoch, M.A. 2015. The changing form of Antarctic biodiversity. Nature, 522, 431438.CrossRefGoogle ScholarPubMed
Clarke, L.J., Beard, J.M., Swadling, K.M. & Deagle, B.E. 2017. Effect of marker choice and thermal cycling protocol on zooplankton DNA metabarcoding studies. Ecology and Evolution, 7, 873883.CrossRefGoogle ScholarPubMed
Cockell, C.S. & Stokes, M.D. 2004. Widespread colonization by polar hypoliths. Nature, 431, 414.CrossRefGoogle ScholarPubMed
Cowan, D.A., Khan, N., Pointing, S.B. & Cary, S.C. 2010. Diverse hypolithic refuge communities in the McMurdo Dry Valleys. Antarctic Science, 22, 714720.CrossRefGoogle Scholar
Cowan, D.A., Russell, N.J., Mamais, A. & Sheppard, D.M. 2002. Antarctic Dry Valley mineral soils contain unexpectedly high levels of microbial biomass. Extremophiles, 6, 431436.CrossRefGoogle ScholarPubMed
Czech, L., Barbera, P. & Stamatakis, A. 2020. Genesis and Gappa: processing, analyzing and visualizing phylogenetic (placement) data. Bioinformatics, 36, 32633265.CrossRefGoogle ScholarPubMed
Douglas, G.M., Maffei, V.J., Zaneveld, J.R., Yurgel, S.N., Brown, J.R., Taylor, C.M., et al. 2020. PICRUSt2 for prediction of metagenome functions. Nature Biotechnology, 38, 685688.CrossRefGoogle ScholarPubMed
Edgar, R.C. 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5, 113.CrossRefGoogle ScholarPubMed
Edgar, R.C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 24602461.CrossRefGoogle ScholarPubMed
Fernandes, A.D., Macklaim, J.M., Linn, T.G., Reid, G. & Gloor, G.B. 2013. ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-Seq. PLoS One, 8, e67019.CrossRefGoogle ScholarPubMed
Garrison, D.L. 1991. Antarctic sea ice biota. American Zoologist, 31, 1733.CrossRefGoogle Scholar
Gloor, G.B., Macklaim, J.M., Pawlowsky-Glahn, V. & Egozcue, J.J. 2017. Microbiome datasets are compositional: and this is not optional. Frontiers in Microbiology, 8, 2224.CrossRefGoogle Scholar
Gong, J., Dong, J., Liu, X. & Massana, R. 2013. Extremely high copy numbers and polymorphisms of the rDNA operon estimated from single cell analysis of oligotrich and peritrich ciliates. Protist, 164, 369379.CrossRefGoogle ScholarPubMed
Gore, D.B., Creagh, D.C., Burgess, J.S., Colhoun, E.A., Spate, A.P. & Baird, A.S. 1996. Composition, distribution and origin of surficial salts in the Vestfold Hills, East Antarctica. Antarctic Science, 8, 7384.CrossRefGoogle Scholar
Howat, I.M., Porter, C., Smith, B.E., Noh, M.J. & Morin, P. 2019. The Reference Elevation Model of Antarctica. The Cryosphere, 13, 665674.CrossRefGoogle Scholar
Hsieh, T.C., Ma, K.H., Chao, A. & McInerny, G. 2016. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7, 14511456.CrossRefGoogle Scholar
Khan, N., Tuffin, M., Stafford, W., Cary, C., Lacap, D.C., Pointing, S.B. & Cowan, D. 2011. Hypolithic microbial communities of quartz rocks from Miers Valley, McMurdo Dry Valleys, Antarctica. Polar Biology, 34, 16571668.CrossRefGoogle Scholar
Lahti, L. & Shetty, S. 2017. Tools for microbiome analysis in R. Retrieved from http://microbiome.github.com/microbiomeGoogle Scholar
Lambrechts, S., Willems, A. & Tahon, G. 2019. Uncovering the uncultivated majority in Antarctic soils: toward a synergistic approach. Frontiers in Microbiology, 10, 242.CrossRefGoogle Scholar
Langille, M.G., Zaneveld, J., Caporaso, J.G., McDonald, D., Knights, D., Reyes, J.A., et al. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 31, 814821.CrossRefGoogle ScholarPubMed
Le, P.T., Makhalanyane, T.P., Guerrero, L.D., Vikram, S., Van de Peer, Y. & Cowan, D.A. 2016. Comparative metagenomic analysis reveals mechanisms for stress response in hypoliths from extreme hyperarid deserts. Genome Biology and Evolution, 8, 27372747.CrossRefGoogle ScholarPubMed
Lebre, P.H., Bottos, E., Makhalanyane, T.P., Hogg, I. & Cowan, D.A. 2020. Islands in the sand: are all hypolithic microbial communities the same? FEMS Microbiology Ecology, 97, fiaa216.CrossRefGoogle ScholarPubMed
Logares, R., Tesson, S.V.M., Canback, B., Pontarp, M., Hedlund, K. & Rengefors, K. 2018. Contrasting prevalence of selection and drift in the community structuring of bacteria and microbial eukaryotes. Environmental Microbiology, 20, 22312240.CrossRefGoogle ScholarPubMed
Logares, R., Deutschmann, I.M., Junger, P.C., Giner, C.R., Krabberød, A.K., Schmidt, T.S.B., et al. 2020. Disentangling the mechanisms shaping the surface ocean microbiota. Microbiome, 8, 55.CrossRefGoogle ScholarPubMed
Logares, R., Lindstrom, E.S., Langenheder, S., Logue, J.B., Paterson, H., Laybourn-Parry, J., et al. 2013. Biogeography of bacterial communities exposed to progressive long-term environmental change. The ISME Journal, 7, 937948.CrossRefGoogle ScholarPubMed
Louca, S. & Doebeli, M. 2018. Efficient comparative phylogenetics on large trees. Bioinformatics, 34, 10531055.CrossRefGoogle ScholarPubMed
Makhalanyane, T.P., Valverde, A., Birkeland, N.K., Cary, S.C., Tuffin, I.M. & Cowan, D.A. 2013a. Evidence for successional development in Antarctic hypolithic bacterial communities. The ISME Journal, 7, 20802090.CrossRefGoogle ScholarPubMed
Makhalanyane, T.P., Valverde, A., Lacap, D.C., Pointing, S.B., Tuffin, M.I. & Cowan, D.A. 2013b. Evidence of species recruitment and development of hot desert hypolithic communities. Environmental Microbiology Reports, 5, 219224.CrossRefGoogle ScholarPubMed
Markowitz, V.M., Chen, I.M.A., Palaniappan, K., Chu, K., Szeto, E., Grechkin, Y., et al. 2012. IMG: the Integrated Microbial Genomes database and comparative analysis system. Nucleic Acids Research, 40, D115D122.CrossRefGoogle ScholarPubMed
McMurdie, P.J. & Holmes, S. 2013. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One, 8, e61217.CrossRefGoogle Scholar
Mergelov, N., Dolgikh, A., Shorkunov, I., Zazovskaya, E., Soina, V., Yakushev, A., et al. 2020. Hypolithic communities shape soils and organic matter reservoirs in the ice-free landscapes of East Antarctica. Scientific Reports, 10, 10277.CrossRefGoogle ScholarPubMed
Mirarab, S., Nguyen, N. & Warnow, T. 2011. SEPP: SATé-Enabled Phylogenetic Placement. In Altman, R.B., Dunker, A.K., Hunter, L., Murray, T. & Klein, T.E., eds, Pacific Symposium on Biocomputing 2012. Singapore: World Scientific, 247258.CrossRefGoogle Scholar
Morgan, M., Anders, S., Lawrence, M., Aboyoun, P., Pagés, H. & Gentleman, R. 2009. ShortRead: a bioconductor package for input, quality assessment and exploration of high-throughput sequence data. Bioinformatics, 25, 26072608.CrossRefGoogle ScholarPubMed
Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., et al. 2020 . vegan: Community Ecology Package. R package version 2.5-7. Retrieved from https://cran.r-project.org/web/packages/vegan/index.htmlGoogle ScholarPubMed
Pankow, H., Haendel, D. & Richter, W. 1991. Die Algenflora der Schirmacheroase (Ostantarktika). Beihefte zur Nova Hedwigia, 103, 1195.Google Scholar
Parada, A.E., Needham, D.M. & Fuhrman, J.A. 2016. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environmental Microbiology, 18, 14031414.CrossRefGoogle ScholarPubMed
Pickard, J. 1986. Spatial relations of the vegetation of the Vestfold Hills. In Pickard, J. ed., Antarctic oasis: terrestrial environments and history of the Vestfold Hills. Sydney: Academic Press, 275308.Google Scholar
Piredda, R., Tomasino, M.P., D'Erchia, A.M., Manzari, C., Pesole, G., Montresor, M., et al. 2017. Diversity and temporal patterns of planktonic protist assemblages at a Mediterranean Long Term Ecological Research site. FEMS Microbiology Ecology, 93, fiw200.CrossRefGoogle Scholar
Pointing, S.B., Chan, Y., Lacap, D.C., Lau, M.C.Y., Jurgens, J.A. & Farrell, R.L. 2009. Highly specialized microbial diversity in hyper-arid polar desert. Proceedings of the National Academy of Sciences of the United States of America, 106, 1996419969.CrossRefGoogle ScholarPubMed
Price, M.N., Dehal, P.S. & Arkin, A.P. 2010. FastTree 2 - approximately maximum-likelihood trees for large alignments. PLoS One, 5, e9490.CrossRefGoogle ScholarPubMed
Quince, C., Lanzen, A., Davenport, R.J. & Turnbaugh, P.J. 2011. Removing noise from pyrosequenced amplicons. BMC Bioinformatics, 12, 38.CrossRefGoogle ScholarPubMed
R Core Team. 2017. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/Google Scholar
Raes, E.J., Karsh, K., Sow, S.L.S., Ostrowski, M., Brown, M.V., van de Kamp, J., et al. 2021. Metabolic pathways inferred from a bacterial marker gene illuminate ecological changes across South Pacific frontal boundaries. Nature Communications, 12, 2213.CrossRefGoogle ScholarPubMed
Roberts, D. & McMinn, A. 1996. Relationships between surface sediment diatom assemblages and water chemistry gradients in saline lakes of the Vestfold Hills, Antarctica. Antarctic Science, 8, 331341.CrossRefGoogle Scholar
Scott, F.J. & Thomas, D.P. 2005. Diatoms. In Scott, F.J. & Marchant, H.J. eds, Antarctic marine protists. Canberra: Australian Biological Resources Study/Hobart: Australian Antarctic Division, 13201.Google Scholar
Smith, M.C., Bowman, J.P., Scott, F.J. & Line, M.A. 2000. Sublithic bacteria associated with Antarctic quartz stones. Antarctic Science, 12, 177184.CrossRefGoogle Scholar
Souffreau, C., Verbruggen, H., Wolfe, A.P., Vanorlmelingen, P., Siver, P.A., Cox, E.J., et al. 2011. A time-calibrated multi-gene phylogeny of the diatom genus Pinnularia. Molecular Phylogenetics and Evolution, 61, 866879.CrossRefGoogle ScholarPubMed
Srivatsan, A. & Wang, J.D. 2008. Control of bacterial transcription, translation and replication by (p)ppGpp. Current Opinion in Microbiology, 11, 100105.CrossRefGoogle ScholarPubMed
Stegen, J.C., Lin, X., Fredrickson, J.K. & Konopka, A.E. 2015. Estimating and mapping ecological processes influencing microbial community assembly. Frontiers in Microbiology, 6, 370.CrossRefGoogle ScholarPubMed
Stegen, J.C., Lin, X., Fredrickson, J.K., Chen, X., Kennedy, D.W., Murray, C.J., et al. 2013. Quantifying community assembly processes and identifying features that impose them. The ISME Journal, 7), 20692079.CrossRefGoogle Scholar
Suter, L., Polanowski, A.M., Clarke, L.J., Kitchener, J.A. & Deagle, B.E. 2020. Capturing open ocean biodiversity: environmental DNA as an alternative to the continuous plankton recorder. Molecular Ecology, 30, 31403157.CrossRefGoogle Scholar
Taton, A., Grubisic, S., Ertz, D., Hodgson, D.A., Piccardi, R., Biondi, N., et al. (2006), Polyphasic study of Antarctic cyanobacterial strains. Journal of Phycology, 42, 12571270.CrossRefGoogle Scholar
Vass, M., Szekely, A.J., Lindstrom, E.S. & Langenheder, S. 2020. Using null models to compare bacterial and microeukaryotic metacommunity assembly under shifting environmental conditions. Scientific Reports, 10, 2455.CrossRefGoogle ScholarPubMed
Venables, W.N. & Ripley, B.D. 2002. Modern applied statistics with S. New York: Springer, 497 pp.CrossRefGoogle Scholar
Wang, C., Zhang, T., Wang, Y., Katz, L.A., Gao, F. & Song, W. 2017. Disentangling sources of variation in SSU rDNA sequences from single cell analyses of ciliates: impact of copy number variation and experimental error. Proceedings of the Royal Society B: Biological Sciences, 284, 20170425.CrossRefGoogle ScholarPubMed
Wang, Q., Garrity, G.M., Tiedje, J.M. & Cole, J.R. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73, 52615267.CrossRefGoogle ScholarPubMed
Ward, C.S., Yung, C.-M., Davis, K.M., Blinebry, S.K., Williams, T.C., Johnson, Z.I. & Hunt, D.E. 2017. Annual community patterns are driven by seasonal switching between closely related marine bacteria. The ISME Journal, 11, 14121422.CrossRefGoogle ScholarPubMed
Wei, S.T., Lacap-Bugler, D.C., Lau, M.C., Caruso, T., Rao, S., de Los Rios, A., et al. 2016. Taxonomic and functional diversity of soil and hypolithic microbial communities in Miers Valley, McMurdo Dry Valleys, Antarctica. Frontiers in Microbiol, 7, 1642.CrossRefGoogle ScholarPubMed
Wharton, R.A., Parker, B.C. & Simmons, G.M. 1983. Distribution, species composition and morphology of algal mats in Antarctic dry valley lakes. Phycologia, 22, 355365.CrossRefGoogle Scholar
Wood, S.A., Rueckert, A., Cowan, D.A. & Cary, S.C. 2008. Sources of edaphic cyanobacterial diversity in the Dry Valleys of Eastern Antarctica. The ISME Journal, 2, 308320.CrossRefGoogle ScholarPubMed
Ye, Y. & Doak, T.G. 2009. A parsimony approach to biological pathway reconstruction/inference for genomes and metagenomes. PLoS Computational Biology, 5, e1000465.CrossRefGoogle ScholarPubMed
Yilmaz, P., Parfrey, L.W., Yarza, P., Gerken, J., Pruesse, E., Quast, C., et al. 2014. The SILVA and ‘All-species Living Tree Project (LTP)’ taxonomic frameworks. Nucleic Acids Research, 42, D643D648.CrossRefGoogle Scholar
Zhang, E., Thibaut, L.M., Terauds, A., Raven, M., Tanaka, M.M., van Dorst, J., et al. 2020. Lifting the veil on arid-to-hyperarid Antarctic soil microbiomes: a tale of two oases. Microbiome, 8, 37.CrossRefGoogle ScholarPubMed
Supplementary material: File

Clarke et al. supplementary material

Clarke et al. supplementary material
Download Clarke et al. supplementary material(File)
File 445.7 KB