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1 Introduction

One object may be composed of parts – a computer is composed of a

motherboard, a central processing unit, and a hard drive. These material objects

are parts of the computer, and the computer is a sum of these parts. Computers are

material artifacts, but the question of whether an object is composed of parts

seems to make sense across ontological categories. The performance of a play is

an event composed of acts, which are, in turn, composed of scenes. Organisms are

composed of parts, some ofwhich perform specific biological functions: a heart is

part of the circulatory system, which is itself part of some organisms. Perhaps

more controversial is the question of whether abstract objects such as sentences –

and the propositions they express – are composed of parts. We speak of sentences

as composed of words, whose written articulations are, in turn, composed of

letters. And, similarly, when a sentence expresses a proposition, we may be

tempted to speak of the proposition as composed of parts that correspond to

parts of the sentence. On this view, propositions themselves are complex, and

their mereological structure mirrors that of the sentences that express them.

Others take propositions to be truth conditions, which they identify with sets of

possibleworlds. The proposition that Socrates is a philosopher is, on this view, the

set of possible worlds at which Socrates is a philosopher. But even then, if the set

of possible worlds at which Socrates is a philosopher is part of the set of worlds at

which he is human, then the proposition that Socrates is human should be part of

the proposition that Socrates is a philosopher.

One common reaction to these questions is to dismiss them on the grounds

that the relation of part to whole doesn’t properly apply to abstract objects

such as sentences or propositions. Instead, the relation of part should be

restricted to the domain of material objects, spatiotemporal regions, events,

and the like. On this view, we should construe talk of parts of sentences or

propositions as nonliteral or as a figure of speech. More generally, there is no

genuine question as to whether a given object is composed when the object in

question lies outside the sphere of material objects, spatiotemporal regions,

events, and the like.

That is not the stance we take in this Element. Instead, we assume that

the relation of part to whole may be properly applied across ontological

categories. In that respect, parthood is not unlike identity: much like each

and every object is self-identical, each and every object is at the very least

part of itself. It is, of course, a further question whether they are invariably

composed of further parts. Even if we grant that propositions are parts of

themselves, the question arises of whether we should conceive of them as

composed of further parts.

1The Mereology of Classes
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Wemay consider ordinary judgments as evidence for the claim that sentences –

or propositions – are composed of further parts, but it is a substantive question

whether ordinary uses of the word ‘part’ should be taken at face value or whether

at least some of them should instead be construed as nonliteral or as a figure of

speech. We speak of a complex number as composed of a real part and an

imaginary part, but it is not at all obvious that we should take all such talk at

face value. We similarly describe a proof as composed of steps, a sphere as

composed of two hemispheres, and a book as composed of chapters. That we do

this is uncontroversial, and the question now is whether we should take all these

judgments at face value. But whatever we do, we have taken the view that we

should not discard the literal interpretation just because the objects in question are

not material or they lack spatiotemporal location.

Let us now distinguish the question of whether the relation of part to whole

applies across ontological categories from the further question of whether

there is more than one way in which an object may be part of another. One

may be tempted to distinguish the way in which a heart is part of a body from the

way in which the letter ‘a’ is part of the written word ‘part’. And if one does this,

it is presumably an open question whether the relation of part to whole is subject

to different constraints relative to different domains of application. That is, one

should not take for granted that the part-to-whole relation on the domain of set

theory is subject to the same principles as the relation is on the domain of

material objects.

We will use the label compositional pluralism for the general hypothesis that

a variety of different relations may constitute the relation of part to whole across

domains of application. A compositional pluralist may want to distinguish the

way in which an arm is part of a body from the way in which a word is part of

a sentence; the way in which a propositional constituent may be part of

a proposition; and the way in which a member may be part of a set. These

relations are all ways in which an object may be part of another, but they may be

subject to different constraints and there is no reason to expect all of them to

abide by the axioms of classical mereology. Kit Fine provides a sustained

defense of the outlook in Fine (2010) but Armstrong (1991) and Johnston

(2006) are further examples.

We contrast this view with compositional monism according to which there is

a uniform sense in which an object is part of another across ontological

categories. There is just one basic relation of part to whole across domains,

which is often construed as the subject matter of classical mereology. This is, for

example, the perspective David Lewis adopts in Lewis (1991).1 One may

1 See Cotnoir and Varzi (2021) for discussion.

2 The Philosophy of Mathematics
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advance the axioms of classical mereology as perfectly general hypotheses

governing the part-to-whole relation across different domains of application.

We now turn to the question of whether mathematical objects, be they

numbers, sets, functions, algebras, graphs, geometric figures, or spaces, are

composed of parts. We speak of a complex number as composed of a real part

and an imaginary part; we describe the additive group of integers as part of the

ring of integers; we speak of a first-order subtheory, for example, Robinson’s

arithmetic, as a part of another theory, for example, Peano arithmetic; we refer

to the vertices of a triangle as parts of its boundary; and we speak of the two

separate parts of a hyperbola. Indeed, the part-to-whole relation makes an

explicit appearance in the subject in Euclid’s axioms, the fifth of which reads

that the whole is greater than the part.2 More generally, Bell (2004) makes clear

how talk of part is central to mathematical practice in a wide array of areas from

algebra and geometry to functional analysis, topology, and category theory.

Given the stance we have just taken, the question of whether mathematical

objects are composed of parts may be thought to be trivial. Mathematical

objects are no exception to the hypothesis that the relation of part to whole

applies unrestrictedly across ontological categories: mathematical objects are,

at a minimum, part of themselves. The more substantive question is whether

they may be composed of proper parts, where by a proper part of an object,

we mean a part other than the object itself. And if they are, then what exactly

are their proper parts?

We speak of mathematical objects as composed of proper parts, but as we

mentioned earlier, the crucial question is whether such talk should be taken at

face value in mathematics or whether it should instead be construed as non-

literal, as a figure of speech, or even as a powerful heuristic.3 Maybe there is no

blanket answer to this question, especially given the great variety and diversity

of uses of ‘part’ and ‘whole’ in mathematics. Maybe some of them are nothing

but a powerful heuristic, and maybe others should be taken literally as instances

of the part-to-whole relation in certain mathematical domains.

This work focuses on the case of classes, and the question of whether to allow

for them to be composed of proper parts. After we explain the reasons for the

focus on classes, two broad perspectives will emerge as candidate answers to

the question of what exactly are the parts of a class. While the two perspectives

are, strictly speaking, orthogonal to the question of compositional monism, one

of them will align with compositional monism and take the answer to that

question to be constrained by the hypothesis that the relation of part to whole

2 The fifth axiom as opposed to the fifth postulate better known as the parallel postulate.
3 That is how we read Bell (2004).

3The Mereology of Classes
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abides by the axioms of classical mereology. The other perspective is compat-

ible with either view, but it will require a weaker mereological framework.

2 The Mereology of Classes

We have raised the question of whether mathematical objects are ever literally

composed of proper parts, but we now confine our discussion to the case of

classes. The reason we speak of classes rather than sets is not because we

envisage some fundamental ontological distinction between them. We remain

neutral on the question of whether nonempty sets should be considered as

special cases of classes. That is, for all we write, there are, in addition to sets,

classes that are not sets. Some theories of classes such as von Neumann–

Bernays–Gödel (NBG) class theory or Morse–Kelley (MK) class theory posit

proper classes, which are not coextensive with a set, whereas standard set

theory, by which we mean Zermelo–Fraenkel set theory with the axiom of

choice (ZFC), does not. We will similarly speak of individuals to refer to objects

without members. We adopt the stipulation laid down in Lewis (1991) accord-

ing to which classes have members. That means that the empty set is not a class

and requires special treatment. Nomatter; for present purposes, wemay identify

it with a chosen individual that is not a class.

There are many reasons for the focus on the question of whether classes are

composed of proper parts. One reason is related to the broader question of

whether mathematical objects are ever composed of proper parts. To the extent

to which vast areas of mathematics reduce to the theory of classes – or set theory

in the absence of proper classes – the relevant mathematical objects are identi-

fied with classes, and the question of whether they are composed of proper parts

reduces to the question of whether certain classes are, in turn, composed of

further parts. We may vindicate the claim that Robinson’s arithmetic is part of

Peano arithmetic when we identify each with a suitable set of formulas. And we

may similarly take at face value the assertion that a hyperbola has two separate

parts when we identify it with an appropriate set of Cartesian coordinates. So,

the question of whether classes are composed of proper parts may play a central

role in the discussion of the broader question of whether mathematical objects

more generally are composed of proper parts.

The next reason is related to the first. Once we take classes to be composed

of proper parts, the question arises whether distinctive class-theoretic relations

such as membership or the subclass relation submit to a mereological analysis.

That is, the question is whether we should expect class-theoretic relations to be

definable in terms of the relation of part to whole. This question is paramount for

those who harbor foundational hopes for mereology. Indeed, Leśniewski (1999)

4 The Philosophy of Mathematics
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and Leśniewski (1927) originally billed mereology as a nominalistically accept-

able replacement for set theory, one whose success depends on its ability to

replicate a rich variety of class-theoretic facts within the framework. The

prospects for such a project are not too bright: Urbaniak (2014) and Simons

(1987) offer an assessment of some of its limitations.

But even if we set aside those nominalistic scruples, the question remains

whether we may eventually be in a position to reduce the theory of classes to

mereology if we side with one or another specification of the parts of a class.

One may, in other words, hope to be able to provide a mereological character-

ization of the class-theoretic universe and the relation of member to class.

That would in turn allow one to faithfully interpret a variety of mathematical

structures in mereology, which would, in turn, raise the prospects of a mereo-

logical foundation for vast areas of mathematics. That expectation, however,

will turn out to be unreasonable no matter how one specifies the parts of a class

on the main perspectives under consideration in this Element.4

The next motivation for the focus on the question of how the part-to-whole

relation is supposed to apply to classes is that the answer may help us confront

a difficult problem in the foundations of set theory. That is the problem of

proper classes, which are often described as setlike objects that are too large to

form a set. Proper classes appear to play an important role in set theory. They

enable us to provide finite axiomatizations of set theory, and they seem to be

a crucial ingredient for the formulation of certain large cardinal hypotheses.5

The problem of proper classes is the challenge to provide an account of the

distinction between sets and proper classes, which, on the one hand, makes

classes sufficiently different from sets, and, on the other, provides some assur-

ance that classes are as real and well-defined as sets are. Horsten (2016) and

Horsten and Welch (2016) have recently proposed conceiving of proper classes

as parts of the set-theoretic universe, which is, in turn, conceived as a sum of all

sets. On their view, the mereology of classes provides a solution to a persistent

problem in the foundations of set theory.

One more reason for the focus on classes is that there appears to be abundant

linguistic evidence for the thesis that classes may be composed of further parts

even if that evidence appears to pull us in different directions. On the one

hand, Kit Fine and Mark Johnston, for example, Fine (2010) and Johnston

(2006), remind us that we generally describe a set – and a class – as composed

of its members, which are contained in it. That would seem to suggest sets – and

4 The problem is compounded by the observation that classical mereology, for example, is decid-
able since Hamkins and Kikuchi (2016) argue that no decidable theory is able to formalize
arithmetic and be Δ0-sound.

5 See Uzquiano (2003) and Horsten and Welch (2016) for discussion.
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classes more generally – have their members as parts. On the other hand, we

seem to speak of the subclasses of a class as parts of it; indeed, as David

Lewis reminds us in Lewis (1991), the German word for subset, ‘Teilmenge’

is literally ‘set-part’ and that pioneers like Cantor and Zermelo often employed

‘Teil’ which is literally ‘part’ for the subset relation, sometimes with the

implication that the subset has members. None of this is conclusive; none of

the theorists we mentioned take all such uses at face value. Instead, they each

dismiss some of these uses of ‘part’ as metaphorical or nonliteral or as a mere

reflection of the analogy between part and a nonmereological relation.

One last reason for the focus on classes is more pragmatic in character:

unlike the broader question of whether mathematical objects ever submit to a

decomposition into proper parts, the question of classes has received a great

deal of attention in recent literature, and more progress is to be expected with

respect to that question than with respect to the broader, less manageable

question of whether mathematical objects in general may be composed of

proper parts.6

Simple Classes

We have taken for granted that classes are parts of themselves, but it is a further

question whether they may, in fact, have parts other than themselves. The

question may seem ill-posed. Some classes seem rather complex and you may

expect them to come with an abundance of proper parts. While the two main

perspectives we discuss in this Element make allowance for classes to be

composed of proper parts, we will use this section to outline a perspective on

which we should remain agnostic on this question. Nothing in the mathematics

of classes requires them to have parts other than themselves.

One option is to decline to construe the complexity of classes as a species of

mereological complexity. Instead, one may deny that class-theoretic relations

such as that of subclass or member are in fact to be analyzed in terms of the

relation of part to whole. This notwithstanding the existence of formal parallels

between some of these relations and that of part. The subclass relation, for

example, is reflexive, antisymmetric, and transitive, which means that it forms

a partial order much like the relation of part is often supposed to do. But of

course, not all partial orders are mereological relations, and the view under

consideration is one on which the subclass relation is not a special case of the

relation of part to whole.

6 Explicit discussion of the case of classes may be found in Armstrong (1991), Lewis (1991), Lewis
(1993), Bigelow (1993), Forrest (2002a), Forrest (2002b), Johnston (2006), Caplan, Tillman, and
Reeder (2010), and Hamkins and Kikuchi (2016).

6 The Philosophy of Mathematics
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Or one could conceive of classes as proxies for their members – much like

a Fregean extension, for example, is an object conceived as a stand-in for

a Fregean concept. We needn’t regard the relation between the extension of

the concept and its instances as a mereological relation; there is no sense in

which horses are parts of the extension of the Fregean concept horse. One may

still ask whether the proxies in question, much like the extension of the concept

horse, may come with proper parts of their own, but the important point is that

nothing in their role as proxies for their members requires them to have proper

parts. So, there is no reason to expect substantive generalizations to underwrite

a systematic mereology of classes.

The outlook is not unprecedented, but rather a view Cartwright (2001)

intimate when they suggest that the subject matter of set theory is the relation

of representation a set bears to several objects. While Cartwright (2001) are not

directly concerned with the question of whether sets themselves are composed

of parts, it seems clear that nothing in the role they play requires the relevant

relation of representation to submit to a mereological characterization. To claim

that a class a; bgf represents the objects a and b is perfectly consistent with the

mereological simplicity of the class: there is no reason to expect a mereological

analysis of the relation of representation. The outlook is similarly explored in

Uzquiano (2015a) as an alternative to more traditional conceptions of sets as

ontologically dependent on their members. The crucial thought is that nothing

in the mathematical role classes are designed to play requires them to have parts

other than themselves.

That general stance would align well with the eliminativist form of structur-

alism McGee (1997) advances. One assumes the existence of a binary relation

that satisfies the axioms of ZFC and construes set-theoretic claims as general-

izations over such binary relations. Each such binary relation allows us to

conceive of a class as a proxy for its members, but the identity or mereological

composition of the proxy is, in fact, irrelevant for mathematical purposes. That

means, in particular, that it is unimportant whether we take classes to include

other classes as parts. What matters is that a system of classes satisfies the axioms

of set theory, and sowhethermereological atoms or complex sums play the role of

classes is completely immaterial. Similar remarks apply to modal formulations of

eliminative structuralism such as Hellman (1989) and Hellman (1996).

Nor is the hypothesis that classes are composed of further parts required to

make sense of the iterative conception of set in line with the minimalist

approach Incurvati (2020) outlines. The minimalist program takes the iterative

conception of set as boiling down to the thought that sets are objects that

collectively exemplify the structure of the cumulative hierarchy, whether they

are mereologically simple or complex. Matters would be different, of course, if

7The Mereology of Classes

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
09

22
41

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009092241


we found the hypothesis that classes have proper parts to be fruitful in other

respects, and this is one dimension of comparison we will consider when we

introduce the two perspectives under discussion in this Element.

Parts of Classes

Let us set aside the hypothesis that classes are simple proxies for theirmembers. If

a class is composed of proper parts, then it is a sum of proper parts, that is, parts

that are different from the sum.7 Talk of ‘sum’ is highly suggestive, but following

Forrest (2002b), there is more than one formal explication of sum in terms of part.

Consider, for example, the contrast between fusion and join. To say that an object

is a fusion of some parts is to say that it has each of them as parts, and anything

that overlaps the object overlaps at least one of the parts.8 Nothing else is built on

this characterization of fusion. To say that an object is a join of some parts is to say

that it has them as parts and that it is itself part of anything that has them as parts,

or, in other words, it is a minimal upper bound under the part-to-whole relation.

This contrast will eventually become important, but notice that there are other

characterizations of sum in the offing. For example, yet another way to conceive

of the sum of some parts is as whatever object overlaps exactly those parts, which

is what Cotnoir and Varzi (2021) call a Goodman fusion.

Whatever explication we choose, the thesis that classes are sums is not very

informative unless we are in a position to specify their parts. We will discuss

two rival approaches to the question of what exactly are the parts of a class. One

option is to identify the parts of a class with its subclasses in line with the

linguistic evidence David Lewis mentions in Lewis (1991). One consequence of

this approach is that classes are, in fact, not composed of their members; they do

not often include their members as parts. The alternative approach is to construe

classes as composed of their members, but since the relation of part to whole is

presumably transitive, the parts of these members are themselves parts of the

class. The parts of a class thus include its members, the members of its

members, the members of the members of its members, and so on.

We will devote later sections to explore each approach in more detail. For

now, we will content ourselves with an outline of their broad contours.

The Main Thesis

Both Lewis (1991) and Lewis (1993) target a theory of sets and classes that is

generally known as Morse–Kelley set theory (MK), one whose variables range

over individuals and classes. Lewis uses the term ‘class’ to apply to classes with

7 Some conceive of singleton classes as simple classes without further parts.
8 To say that two objects overlap is, as usual, to say that they have at least one part in common.

8 The Philosophy of Mathematics

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
09

22
41

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009092241


members and construes the empty set as a chosen individual. Sets with members

are special cases of classes, which are contrasted with proper classes. In

addition to this, he is a compositional monist for whom there is no significant

difference between the way in which a subclass is part of a class and the way in

which a motherboard, say, is part of a computer. There is just one basic relation

of part to whole, which applies across ontological categories in accordance with

the axioms of classical mereology.

Lewis (1991, 7) defends a succinct answer to the question of what exactly are

the parts of a class:

The Main Thesis The parts of a class are all and only its subclasses.

That is, for something to be a part of a class is for it to be a subclass of it.

David Lewis arrives at the thesis that the parts of a class are exactly its

subclasses in two steps.

There is, first, the First Thesis:

The First ThesisOne class is part of another if, and only if, the first is a subclass

of the second.9

Even if classes are members of other classes, they will not constitute a part of

another class unless they are a subclass of it. That is, while the class agf is

a member of the class ag; bf gf , the former is not a part of the latter because it is

not one of its subclasses. Given the stipulation that classes have members, and

the subsequent decision to classify the empty set as an individual rather than

a class, notice that nothing in the letter of the thesis requires the empty set to be

itself part of a class.

The First Thesis leaves open whether a class may include further parts as

well. Lewis’ Second Thesis settles that question:

The Second Thesis No class has any part that is not a class.10

We list all the parts of a given class once we list all of its subclasses: agf gf ,

bgf gf , and ag; bgf gff exhaust the parts of ag; bgf gff . Notice that neither agf
nor the empty set are parts of that class: agf is not part of it because it is not

a subclass but rather a member of ag; bgf gff . The empty set, on the other hand,

is not a part of that class because it is not, in fact, a class, given our stipulation

that all classes have members.

Lewis derives the Main Thesis from the two theses, but he is careful to mount

an argument for the Second Thesis on the basis of more basic mereological

hypotheses (on which more later).

9 See Lewis (1991, 4). 10 See Lewis (1991, 6).

9The Mereology of Classes
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Whatever we think of Lewis’ arguments for the Main Thesis, we should

acknowledge one important limitation. For given the Main Thesis, we are not in

a position to characterize membership in terms of part. The Main Thesis tells us

that a class has a decomposition into singletons, which are mereologically

simple. To the extent to which they lack further mereological structure, they

remain a black box from a strictly mereological standpoint: they are mereolo-

gically indiscernible, which means that mereological structure alone will not

help us uncover which objects are members of which singletons. One could in

principle exchange the contents of these singletons conceived as black boxes

from amereological perspective without making a difference with respect to the

relation of part to whole. The exchange would, however, interfere with the

relation a member bears to a class.

These informal considerations translate into a more precise observation Joel

Hamkins and Makoto Kikuchi record in Hamkins and Kikuchi (2016, the-

orem 2). It is clear that ⊆ is definable in terms of 2. If 〈V ;2〉 is a model of

ZFC, we define the relation ⊆ on V as usual: x⊆ y :¼ 8z z2 x→z2 yð Þ: But the
question now is whether we may conversely define 2 in terms of ⊆. To refute

this claim, we may rely on the general observation that an automorphism on

a structure 〈V ;⊆〉 will preserve relations that are definable in 〈V ;⊆〉. By an

automorphism τ of 〈V ;⊆〉, we mean, as usual, an isomorphism of the structure

onto itself. That is, τ is a one-to-one map from V to V that preserves ⊆, that is,

τ xð Þ⊆τ yð Þ whenever x⊆ y. It is routine to check that given such an automorph-

ism τ of 〈V ;⊆〉, if a binary relation R is definable in 〈V ;⊆〉, then we have that

for all x; y2V , xRy if, and only if, τ xð ÞRτ yð Þ.11 But given a model of ZFC

〈V ;2〉, we may produce an automorphism τ of 〈V ;⊆〉 which does not preserve

2. That is, there are x; y2V such that x2 y even though τ xð Þ =2 τ yð Þ.
Unfortunately, given a model of ZFC 〈V ;2〉, we may produce an automorphism

τ of 〈V ;⊆〉 which does not preserve 2. That is, there are x; y2V such that x2 y

even though τ xð Þ =2 τ yð Þ.
Proposition 1.1 (Hamkins and Kikuchi) There is no definition of 2 in terms

of ⊆.

Proof Outline Given a model of ZFC of the form 〈V ;2〉, we produce an

automorphism τ of 〈V ;⊆〉, which is not an automorphism of 〈V ;2〉. Let θ be a

permutation of V that exchanges ∅ with ∅ gf but leaves every other set

unchanged. Define τ : V→V such that τ xð Þ ¼ θ yð Þ : y2 xgf . Since θ is a

11 If ’ x; yð Þ defines R in 〈V;⊆〉, then it suffices to note that 〈V;⊆〉⊨’ x; yð Þ if and only if
〈V;⊆〉⊨’ðτ xð Þ; τ yð ÞÞ.

10 The Philosophy of Mathematics
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permutation of V , τ is an automorphism on 〈V ;⊆〉: x⊆ y

if and only if θ zð Þ : z2 xg⊆ θ zð Þ : z2 ygif and only ifτ xð Þ⊆ τ yð Þ:ff But τ
does not preserve 2. For notice that although ∅2 ∅ gf , τ ∅ð Þ =2 τ ∅ gf Þð . On

the one hand, τ ∅ð Þ ¼ ∅ , which is the set of θ-images of members of ∅ . But

on the other hand, τ ∅ gf Þ ¼ θ ∅ð Þgfð , which is none other than ∅ gf gf . Since

∅ =2 ∅ gf gf , we conclude that τ ∅ð Þ =2 τ ∅ gf Þð . It follows that τ is an auto-

morphism of 〈V ;⊆〉 that does not preserve membership.

More generally, Hamkins and Kikuchi explain how to make changes in the

relation2 of amodel of ZFC 〈V ;2〉while preserving the same subclass relation.

Given a definable nontrivial permutation θ of V , one may define x2θ y as

θ xð Þ2 y and note that x⊆θ y if, and only if, x⊆ y –even though it is not the

case that x2θ y if, and only if, x2 y. There is nothing special about ZFC, and it is

not difficult to verify that the observation generalizes to cover models of

theories of classes such as NBG and MK.

The moral seems inescapable: if the Main Thesis is true, then neither set

theory nor the theory of classes reduces to mereology alone. We do better to

supplement the language of mereology with a primitive singleton operation

governed by its own distinctive axioms. Hamkins and Kikuchi acknowledge,

for example, that the member relation remains definable in terms of subclass

and singleton. They prove, in particular, that a model of set theory 〈V ;2〉 is
interdefinable with the model 〈V ;⊆; σ〉, where σ is the singleton operator

σ : a↦ agf , which maps an object to its singleton.12 This observation opens

the door to a broad research program, whose goal is to reduce class theory to the

combination of mereology and a theory of singletons.

David Lewis had implemented the program in Lewis (1991), but the extent to

which the framework provides a foundation for class theory is sensitive to one’s

attitude toward the singleton operation. One option is to attempt to identify

singletons with more familiar objects to which we may have independent

epistemic access. David Armstrong, for example, identifies singletons with

certain states of affairs in Armstrong (1991), and John Bigelow similarly

identifies them with haecceities in Bigelow (1993).13 Other candidates are not

difficult to isolate: self-identity tropes in the manner of D. C. Williams, tropes

(Forrest 2002a), and rigid embodiments (Caplan, Tillman, and Reeder 2010).14

In contrast to this, David Lewis dismisses the prospects of a reduction of

12 This is theorem 13 of Hamkins and Kikuchi (2016).
13 However, Bigelow departs from the Main Thesis to the extent to which he proceeds to identify

sets with plural haecceities as opposed to sums of singular haecceities. The point remains that
a proponent of the Main Thesis could still make use of the identification of singletons with
singular haecceities.

14 The identification of singletons with rigid embodiments fits better with an alternative conception
of how classes enter into the part–whole relation.

11The Mereology of Classes
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singletons to more familiar objects on the grounds that they either involve what

he regards as unmereological modes of composition or remain profoundly

mysterious. Instead, he posits the existence of an operation, which satisfies

certain structural axioms from which we can deduce the basic principles of

Morse–Kelley class theory.

Hierarchical Composition

One apparently untoward consequence of the Main Thesis is that classes are not

composed of their members, which is how we often describe them. We often

talk of the members as contained in the class to which they belong, which again

suggests that they are regarded as parts. Subscribers to the Main Thesis will

presumably construe such talk as nonliteral or as a figure of speech, one that is

perhaps grounded in an analogy between member and the relation some atoms

bear to the sum they compose. Suggestive as the analogy may be, they may

continue, we shouldn’t read too much into it.

One more argument against the hypothesis that classes are composed of

members is that unlike part, the member relation is neither reflexive nor transi-

tive: a is a member of agf , which is a member of agf gf , but a is not a member of

agf gf . To the extent to which the part-to-whole relation should form a partial

order, that is, be reflexive, antisymmetric, and transitive, we have reason to

reject the identification of part and member. That isn’t, however, a decisive

consideration against the hypothesis that classes have their members as parts.

For the suggestion is not that we identify part and member, but rather that we

regard cases of membership as special cases of part. Classes exhibit, in fact,

a hierarchical mereological structure: they include its members as immediate

parts, but they may include other parts as well, for example, members of their

members, members of the members of their members, and so on. In other words,

the proper parts of a class would include whatever stands in the ancestral of the

relation of immediate part to it. These may include classes and individuals,

which are objects without members, and while the immediate parts of classes

are members, the immediate parts of individuals are not.15

Classes are not the exception but rather the rule. Our body is a complex

material object composed of limbs and organs, but these are complex material

objects themselves composed of bones and tissue. Even if we count limbs and

organs as immediate parts of the body, the bones and tissues that compose these

are not immediate parts of the body but rather are mere parts of it. The parts of

15 One object, as usual, x stands in the ancestral of a binary relation R to another object y if, and
only if, there is a finite sequence x1; . . . ; xn such that xRx1, for each i < n, xiRxiþ1, and xnRy.

12 The Philosophy of Mathematics
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a body would include not only its immediate parts, but the immediate parts of

those, the immediate parts of the immediate parts of those, and so on. While the

relation of immediate part is not reflexive or transitive, the reflexive closure

of the ancestral of that relation is in fact a partial order, for example, reflexive,

antisymmetric, and transitive. So, the reflexive closure of the ancestral of

immediate part is a candidate relation of part, for example, Fine (1999,

p. 563).16 This is not to say we should expect this relation to abide by the

axioms of classical mereology. Proponents of the hierarchical perspective will

depart from classical mereology at crucial junctures, which result in a rather

different account of the relation of part to whole. Different variations on the

hierarchical outlook are outlined in Fine (1999), Johnston (2006), and Koslicki

(2008).17

Classes are particularly amenable to the hierarchical perspective. To be

sure, each class is part of itself, but in addition to this, each class contains

each of its members as an immediate part. Since immediate parts are parts,

and the part–whole relation is transitive, each class contains the members

of its members as further parts. In other words, the parts of a class include

that very class, its members, the members of its members, the members of

the members of its members, and so on. Furthermore, if some of these

parts are individuals, then the class includes the parts of these individuals

as well.

We have implicitly restricted attention to the hierarchical mereological struc-

ture of impure classes generated from a given domain of individuals, but it is not

obvious how to model pure classes on this approach. For whatever we make of

the empty set, it should not have members as immediate parts. One option at this

point is to follow Lewis (1991) and conceive of the empty set as a chosen

individual without immediate parts. The choice would be arbitrary: there is no

reason to prefer one individual to another to encode the existence of a set

without members. While that is our preference in this Element, there are other

alternatives in the market: Johnston (2006) suggests the identification of the

empty set with the singleton of an arbitrary item, one that is no object in

particular. The thought is that there would be no item in particular that would

be a member of the empty set as desired. On the other hand, Caplan, Tillman,

and Reeder (2010) propose to identify the empty set with a certain attribute, one

they take to unify the immediate parts of a class. So, the empty set is not a class

but rather an attribute, which, for them, is part of each and every class.

16 The reflexive closure of a relation on a set is the ⊆-least relation that includes R and is reflexive
on that set. Antisymmetry requires a separate argument.

17 More recently, Goodman (2022) explicitly combines the vision with a plenitudinous ontology.
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Before we continue the discussion of the hierarchical approach, let us codify

the first pass at the hierarchical perspective on classes:

Hierarchical Composition The immediate parts of a class are all and only its

members. The parts of a class are the class itself and all and only its ancestral

immediate parts.

The parts of a class include the class itself, its members, the members of its

members, the members of the members of its members, and so on. If some of

those members are nonclasses, their immediate parts will be parts of the class as

well.

The letter of Hierarchical Composition is neutral with respect to whether

immediate part should be taken as basic or whether it should be explained in

terms of a more basic relation of part. We have already intimated one reason to

prefer the latter option: to the extent to which one may expect the most basic

relation of part to form a partial order, one has reason to rule immediate part as

the more basic relation of part. While members are parts of classes, being

a member is not a basic way of being a part. We will eventually consider an

alternative outlook on which we would do better if we adopted immediate part

as basic and explained part in terms of it.

One may be tempted to take the further step to regard a class as a sum of its

members. It is important to note, however, that the further step is not compul-

sory: in line with Forrest (2002b), onemay subscribe to the letter of Hierarchical

Composition and nonetheless deny that a singleton agf , for example, is a sum of

its sole member on the grounds that a itself – as opposed to the singleton – is the

join of the sole proper part of agf . They will, in fact, note that a class is more

than the sum of its proper parts.

Others may operate with a conception of sum on which classes are indeed

sums of their members. But notice that it is part of the hierarchical layout that

some individuals may in fact compose more than one sum. The molecules that

compose a body to the extent to which they exemplify a certain pattern of

organization compose a class of molecules, which exists to the extent to which

they do and regardless of how they are organized. For a simpler example, three

individuals a, b, and c may be the immediate parts of the class a; b; cgf as they

exist, but they may as well be the immediate parts of a queue as they exemplify

a certain spatial arrangement. The difference between the class a; b; cgf and the

queue a, b and c lies in the fact that the very same three individuals are unified

by different relations in the words of Fine (1999) or different principles of unity

in the words of Johnston (2006). One crucial difference between a class of a, b,

and c and a queue made out of a, b and c lies in the fact that unlike the latter, the

former is guaranteed to exist if the immediate parts exist.

14 The Philosophy of Mathematics

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
09

22
41

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009092241


Hierarchical Composition departs from the Main Thesis at least twice over.

On the one hand, classes have parts other than its subclasses: in the case of

impure classes, they may even include individuals as parts. But on the other

hand, and no less importantly, Hierarchical Composition appears to exclude

proper subclasses as parts: if a subclass is not an ancestral member of a given

class, then it is not part of it, for example, the singleton agf is ruled out as a part

of the class a; bgf . Maybe we should have expected that. Classes are formed out

of its members rather than its subclasses, and we should not read too much into

the undeniable formal analogy between subclass and part.18 This is the view

Johnston (2006) appears to endorse.

One of the limitations of the Main Thesis, you may recall, is that there is no

definition of member exclusively in terms of part. Hierarchical Composition is

subject to a similar limitative constraint. To the extent to which one may be

inclined to take immediate part as derivative on a more basic relation of part,

one may hope to explain membership in terms of that relation of part. Indeed, if

we could define immediate part in terms of part, we would be able to define

membership in terms of part and class; to be a member would just be to be an

immediate part of a class.

There is, unfortunately, no optimal characterization of immediate part in

terms of part. Simons (1987:108) and Cotnoir and Varzi (2021, sec. 3.3.2)

propose to make do with the relation of maximal proper part, where one object

is a maximal proper part of another if the former is a proper part of the second,

and there is no intermediate proper part between them, that is, no object that

includes the former as a proper part is a proper part of the latter. For purposes of

illustration, on the strict hierarchical view, agf , for example, would count as

a maximal proper part of ag; b; cgf gff , while a would not on the grounds that

there is an intermediate proper part between a and ag; b; cgf gff , namely, agf .

So, the tentative definition of immediate part in terms of maximal proper part

would allow us to rule out a as an immediate part of ag; b; cgf gff .

Unfortunately, the characterization of immediate part in terms of maximal

proper parts is not without problems. Fine (1992, footnote 16) observes that

while a is admittedly an immediate part of a; agf gf , it is not a maximal proper

part of a; agf gf : a is an immediate part of agf , which is in turn an immediate

part of a; agf gf .

Kit Fine turned that observation into a formal argument for the thesis that

there is no definition ofmember,2, in terms of its ancestral, which we write2∞.19

It is clear that 2∞ is definable in terms of 2, since to be an ancestral member of

a set x is to be a member of its transitive closure, which is the⊆-least set, which

18 Both relations are partial orderings. 19 For example, a2∞ agf gf , even though a =2 agf gf .
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contains x and contains every member of every member it contains. But since

the reflexive closure of 2∞ corresponds to the more basic relation of part on the

view under consideration, we would like to know whether we may conversely

define 2 in terms of 2∞. The style of argument we find in Fine (1992, footnote

16) is parallel to the one we used to establish that there is no definition of 2 in

terms of ⊆. Given a model of ZFC 〈V ;2〉, we outline an automorphism of

〈V ;2∞〉 that does not preserve 2. That is, there will be x; y2V such that x2 y

even though τ xð Þ =2 τ yð Þ.
Proposition 1.2 (Fine) There is no definition of 2 in terms of its ancestral 2∞.

Proof Outline Given a model of ZFC of the form 〈V ;2〉, we seek an auto-

morphism τ of 〈V ;2∞〉 which is not an automorphism on 〈V ;2〉. Suppose τ is
a permutation of V that exchanges ∅ ; ∅ gf gf with ∅ gf gf in all sets in which

they occur.20 Because τ exchanges each set with another set which has exactly

the same ancestral members, the result is, in fact, an automorphism of 〈V ;2∞〉.

But τ does not preserve 2. On the one hand, ∅2 ∅ ; ∅ gf gf , but, on the other

hand, τ ∅ð Þ =2 τ ∅ ; ∅ gf gf Þð , since ∅ =2 ∅ gf gf .

Proponents of Hierarchical Composition face a dilemma. One horn to cope

with the indefinability of member in terms of the basic relation of part is to make

do with a surrogate for that relation. That would be in line with the direction of

travel Forrest (2002b) outlines, even though he hints at a more liberal view of

the mereology of classes. The other horn is to invert the order of explanation and

to adopt the relation of immediate part as the more basic relation and to explain

part in terms of it. Admittedly, immediate part is neither reflexive nor transitive,

which many take to disqualify it as a basic way of being a part. But that is no

decisive objection for the development of a hierarchical mereology in terms of

immediate part within which part is treated as a less basic relation, one which

corresponds to the reflexive closure of the ancestral of immediate part. That is at

least one interpretation of the project Caplan, Tillman, and Reeder (2010)

undertake. They outline a reduction of ZFC against the background of

a mereological framework closely related to the theory of embodiments Fine

(1999) develops, except that unlike Fine (1999), Caplan, Tillman, and Reeder

(2010) explicitly adopt the relation of immediate part as a basic mereological

relation.

Hierarchical Composition takes at face value the judgment that classes

contain their members as parts, but it ignores the judgment that classes include

subclasses as parts. Its proponents are not moved by the structural analogy

between the subclass relation and the relation of part to whole, and they

20 For example, τ ∅ gf gf Þ ¼ ∅ ; ∅ gf gfð and τ ∅ gf gf gf Þ ¼ ∅ ; ∅ gf gf gfð .
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recommend to construe the latter judgment as nonliteral or as a figure of speech.

That is, however, not a compulsory feature of the hierarchical outlook.

One option at this point is to draw a distinction between two different modes

of composition in the spirit of compositional pluralism and to suggest that

Hierarchical Composition is concerned with just one of them. Once we do

this, we have reason to expand the range of parts we ascribe to a class.

Liberal Hierarchical Composition. The immediate parts of a class are the

members of the class. The parts of a class are its subclasses and all and only its

ancestral immediate parts.

Liberal Hierarchical Composition accommodates the hypothesis that a class

may be regarded both as a sum of its members and as a sum of its proper

subclasses. Thus ag; bf gf is, on the one hand, composed of agf and b and, on

the other, composed of agf gf and bgf . One difference is that agf and b are

immediate parts of the class, whereas agf gf and bgf are mere parts of it. These

modes of composition behave differently: one generates a class as the union of

its proper subclasses, whereas the other generates it directly from its members.

While Fine (2010) takes the first mode of composition as basic and the second as

derived, the point remains that there is no unsurmountable obstacle to regarding

both the members and the subclasses of a class as parts of that class.

The observation that ag; bf gf is, on the one hand, composed of agf and b

and, on the other, composed of agf gf and bgf is of a piece with the more

general observation that sums are often subject to more than one decomposition

into proper parts. Since the relation of proper part is transitive, the picture that

emerges is one on which the relation of proper part subsumes chains of member

and proper subclass: x would be a proper part of a class y if there is a chain

x1; . . . ; xn, where x ¼ x1, and for each i < n, xi2 xiþ1 or xi⊂ xiþ1, and xn ¼ y.

The class agf , for example, would be a proper part of a; bg; cgf gff , even if the

former is itself neither a member nor a subclass of the latter. It is not difficult to

verify that the reflexive closure of this relation, which we write x⪯ y, is

reflexive and transitive.21 Fine (2010) notes that it takes more work to convince

ourselves that the hybrid relation is, in fact, antisymmetric.22

21 Reflexivity is trivial. For transitivity, note that if x≼ y and y≼ z, then, if x 6¼ z, then one chain of
member and proper subclass connects x with y or one connects y with z. It is simple to combine
these chains into a chain of member and proper subclass that links x with z.

22 We begin with two preliminary observations. On the one hand, if x2 y, then the transitive closure
of x is a proper subset of the transitive closure of y. That is, if x2 y, then TC xð Þ⊂ TC yð Þ.
Furthermore, if x⊂ y, then TC xð Þ⊆ TC yð Þ. It follows that if a suitable chain of member and
subset links x and y, x≼ y, then TC xð Þ⊆ TC yð Þ. But of course, if x 6¼ y, then TC xð Þ⊂ TC yð Þ,
whence TC yð Þ⊈ TC xð Þ. It follows that :y≼ x as desired.
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The prospects of a definition of member in terms of the hybrid of member and

proper subclass don’t look too bright. For the crucial observation stands that

given an individual a, the classes a; agf gf and agf gf share a and agf as their

sole proper parts and, in fact, remain indistinguishable from the standpoint of

chains of member and proper part. In view of this, Forrest (2002b), who appears

to conceive of proper part in those terms, proposes to make do with a surrogate

for the relation a member bears to a class. One advantage of the surrogate in

question is that it admits of a purely mereological characterization against the

background of Heyting mereology, on which more later. Forrest (2002b) points

out how given the existence of a sufficiently rich and varied domain of individ-

uals, one may, in fact, provide surrogates for pure classes and mimic the theory

of classes. In fact, the framework that results provides a hospitable environment

for much of mathematics.

3 The Framework

We have outlined the contours of two rival approaches to the mereology of

classes. The purpose of this section is twofold. We will first present a formal

framework in which to conduct each investigation, and we will proceed to

outline some limitative constraints on each project. We will eventually operate

in a plural extension of the language of mereology, which includes a binary

relation symbol ≤ for part as a nonlogical primitive – and ≪ as a binary

relation symbol for immediate part in the case of hierarchical mereology.

A plural extension of the language of mereology expands the primitive vocabu-

lary of the language with plural resources, which include plural quantification

and plural predication.23While the axioms of plural logic are generally common

ground to both approaches, they will part ways when it comes to the mereo-

logical system they accept.

We proceed in stages. We will first introduce first- and second-order axio-

matizations of different mereological systems, and we will later explain how to

expand each framework with plural resources. We will take classical logic for

granted in what follows, but the reader may consult Cotnoir and Varzi (2021,

chapter 6) for the prospects of nonclassical formulations of mereology against

the background of alternative logical frameworks.

23 One of the advantages of a plural framework is that it enables us to provide finite axiomatizations
of mereology. There are other ways to achieve this by resorting to either quantification over sets
or second-order quantification into predicate position. But while second-order formulations of
mereology, for example, match the expressive power of plural axiomatizations, they offer a less
direct route to the question of whether some objects have a sum or whether they form a class. See
Cotnoir and Varzi (2021, chapter 6) for a direct comparison between these approaches.
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Mereology

Mereology is the formal theory of the relation of part to whole. It is generally

formulated in a first-order language with identity and a nonlogical predicate ≤
for part. That is, x ≤ y is read: “ x is part of y.”We define proper part and overlap,

respectively, in terms of part:

x < y :¼ x ≤ y∧ x 6¼ y
x ∘ y :¼ ∃ z z ≤ x∧ z≤ yð Þ

So, x < y is read: “ x is a proper part of y,”which means that x is a part of y other

than x. On the other hand, x ∘ y is read: “ x overlaps y,” which means that x and y

have some part in common.

To the extent to which we aim to explore different answers to the question of

how classes are sums of their proper parts, we should acknowledge that there is

more than one formal explication of sum in mereology. Some of them coincide

against the background of standard mereological frameworks, but they may

well come apart in weaker systems and the difference may become important in

what follows. Let us momentarily distinguish three salient candidate explica-

tions of sum.24 The join of the instances of a given condition ’ is a minimal

upper bound of those instances under part, which will be unique given the

antisymmetry of part:

y ¼ ∨’ xð Þ :¼ 8xð’ xð Þ→x ≤ yÞ∧8zð8xð’ xð Þ→x ≤ zÞ→y ≤ zÞ:

In contrast to join, an object y is a fusion of the instances of a given condition ’

if, and only if, y includes each instance of ’ as a part, and every part of y

overlaps some instance of ’:

Fu’ xð Þy :¼ 8xð’ xð Þ→x ≤ yÞ∧8zðz ≤ y→ ∃ xð’ xð Þ∧ z ∘ xÞÞ:

Notice that nothing in the definition of fusion requires fusions to be unique.

Indeed, uniqueness is not even a consequence of the assumption that part forms

a partial order.

There is finally what Cotnoir and Varzi (2021) call aGoodman fusion y of the

instances of a given condition ’, which overlaps exactly those objects that

overlap some instance of ’: Fu0’ xð Þy :¼ 8zðz ∘ y↔ ∃ xð’ xð Þ∧ z ∘ xÞÞ:

24 They do not, of course, exhaust the range of candidate explanations. See Cotnoir and Varzi
(2021, chapter 5) for comparison of a variety of proposals.
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Cotnoir andVarzi (2021) compare the three explications of sum and explain how

they behave differently in different environments. What is important for present

purposes is that they underwrite different standard axiomatizations of mereology.

Classical Extensional Mereology

Classical Extensional Mereology (CEM) emerges as a natural extension of two

weaker systems.25 There is, first, Core Mereology (M), which consists of three

partial order axioms:

Reflexivity : x ≤ x
Antisymmetry : x ≤ y∧ y ≤ x→x ¼ y
Transitivity : x ≤ y∧ y ≤ z→x ≤ z

Reflexivity requires objects to be parts of themselves; antisymmetry bars

distinct objects from being mutual parts; and transitivity requires the part-to-

whole relation to be transitive: if one object is part of a second, and the second

part of a third, then the first object is part of the third.

Different axiomatizations of CEM correspond to different extensions of the

axioms of core mereology with further axioms concerned with the question of

composition and decomposition, respectively. While some axiomatizations are

more elegant than others, we want to highlight the range of options available to

a theorist who is prepared to relax the axioms of CEM in response to certain

conflicts.

The system Mmakes sure that part is a partial order but remains neutral as to

how sums decompose into further parts. We list three candidate axioms in order

of strength:

Weak Supplementation : x < y→ ∃ z z ≤ y∧:z ∘ xð Þ
Strong Supplementation : x≰ y→ ∃ z z ≤ x∧:z ∘ yð Þ
Remainder : x≰ y→ ∃ z8uðu ≤ z↔ u ≤ x∧:u ∘ yð ÞÞ

Weak supplementation tells us that if a whole has a proper part, then the whole

has another part disjoint from the first proper part. If a torso is a proper part of

a statue, then the statue has some part with no parts in common with the torso,

for example, a head. Strong supplementation is similar: if the statue is not part of

the torso, then it has some part with no parts in common with the torso. Finally,

remainder requires the existence of a unique maximal part of x which is disjoint

from y. This remainder may be conceived as the relative complement of y in x,

namely, what would remain of x if we deleted y. Neither Weak nor Strong

25 This system receives more than one name in the literature, and it is sometimes called “classical
mereology.”
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Supplementation guarantees the existence of such a remainder on their own, but

they do in the presence of appropriate composition principles, on which more in

the following discussion.26

Minimal (MM) and Extensional Mereology (EM) are the systems that extend

Core Mereology with Weak and Strong Supplementation, respectively.

Given the distinction between join, fusion, and Goodman fusion, there is

more than one candidate axiom schema for composition. One of them asserts

the existence of a join for each nonempty condition but leaves open whether the

join is a fusion, whereas the other two assert the existence of a fusion for each

nonempty condition and one of them explicitly requires the fusion to be unique.

Join : ∃ x’ xð Þ→ ∃ y y ¼ ∨’ xð Þ
Fusion : ∃ x’ xð Þ→ ∃ y Fu’ xð Þ y
Goodman Fusion : ∃ x’ xð Þ→ ∃ y Fu0’ xð Þ y
Unique Fusion : ∃ x’ xð Þ→ ∃ !y Fu’ xð Þy

There is an array of mereological systems, which supplement the axioms of

Core Mereology with different axioms for composition and decomposition,

respectively. One of them stands out as a candidate standard for mereology,

which is, in fact, CEM.

There are at least four different but equivalent characterizations of CEM:

• Core Mereology + Weak Supplementation + Fusion (Hovda 2009)

• CoreMereology + Strong Supplementation + Goodman Fusion (Eberle 1970;

Casati and Varzi 1999)

• Core Mereology + Remainder + Join (Cotnoir and Varzi 2019; Cotnoir and

Varzi 2021)

• Transitivity + Unique Fusion (Tarski 1983; Lewis 1991)

What these axiomatizations have in common is that they require part to form

a complete Boolean algebra (without the zero element).27 The distinction

between these axiomatizations will eventually be important as they will each

suggest different responses to the first limitative constraint we will discuss in the

last part of this section.

Classical Extensional Mereology remains neutral with respect to the exist-

ence of mereological atoms conceived as objects without a decomposition into

proper parts. More precisely, we may tentatively define an object is

a mereological atom if, and only if, it is not a sum of proper parts. This is

equivalent to the claim that the object lacks proper parts against the backdrop

26 See Cotnoir and Varzi (2021, chapter 4) for a comparison of the strength of these supplementa-
tion principles.

27 Cotnoir and Varzi (2021) explain and discuss the result in some detail.
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of CEM but not relative to weaker mereological systems introduced in the

following discussion.28 Atomism is often phrased as the thesis that everything

has some atom as a part, which, as Cotnoir and Varzi (2019) report, is in the

presence of transitivity and strong supplementation, enough to secure the thesis

that everything is a fusion of atoms. One salient atomless alternative is to insist

that everything is gunk understood as something whose parts divide forever into

further proper parts.

CEM is the framework David Lewis takes for granted in Lewis (1991) and

Lewis (1993). Since the Main Thesis requires singletons to be classes without

parts other than themselves, they automatically become mereological atoms.

Heyting Mereology

Hierarchical Composition endows classes with a hierarchical mereological

structure: they include members as immediate parts, which may, in turn, come

with further immediate parts. On the strict formulation of the hypothesis, there

is a distinction between the relation of immediate part that a member bears to

a class, and the relation of part corresponding to the reflexive closure of the

ancestral of immediate part. On the more liberal formulation of the hypothesis,

they include subclasses as further parts. There is a distinction between the

relation of immediate part that a member bears to a class, and the relation

corresponding to the reflexive closure of a hybrid of the relations of member and

proper subclass.

As mentioned earlier, one important question is whether to take immediate

part as basic and treat part as derivative or whether to take part as a basic and to

derive immediate part from it. One reason to prefer the latter option is that

immediate part is not transitive: to be an immediate part of an immediate part of

a class, for example, is not sufficient in order to be an immediate part of the

class. It is not uncommon to think that a nonnegotiable constraint on a basic

relation of part is that it should be transitive.29 There are dissenters, of course,

but the case for the transitivity of part seems more robust than the case for other

mereological principles.30

Heyting mereology provides a framework for a transitive relation of part to

whole in line with Hierarchical Composition. This is an extension of Core

Mereology that has recently been discussed in connection to this and related

28 We will eventually introduce a contrast between simples conceived as objects without proper
parts and atoms conceived as objects that are not sums of their proper parts.

29 For explicit articulations of this perspective, consider McDaniel (2009) and Fine (2010). The
former requires a relation of part to satisfy a remainder principle, which, as we will soon note,
will not be available in Heyting mereology.

30 See Casati and Varzi (1999) and Cotnoir and Varzi (2019: 3.3) for discussion.
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projects, for example, Forrest (2002b), Mormann (2012) and (2013), and Russell

(2016). What makes Heyting mereology distinctive is the rejection of many

supplementation principles available in classical mereology. One reason to

make do without supplementation principles stems from cases of mereological

coincidence: to the extent to which a statue and some clay are made of the same

matter, something overlaps one if, and only if, it overlaps the other. If wemake the

further assumption that the clay is a proper part of the statue, we obtain

a counterexample to the principle of weak supplementation: The clay is

a proper part of the statue, but the clay overlaps everything the statue overlaps.

That is the moral Goodman (2022), for example, extracts from the case. Not all

friends of coincidence construe the case to be a counterexample to weak sup-

plementation, for example, Cotnoir (2010) presents the case as a counter-

example to antisymmetry: the clay and the statue are mutual proper parts.

Hierarchical Composition motivates a much more clear-cut counterexample

to weak supplementation. For consider a singleton agf of which a is a proper

part according to Hierarchical Composition. Since the parts of agf include a and

any parts thereof, every part of agf must overlap a, pace weak supplementation.

Heyting mereology is a salient fallback for subscribers to Hierarchical

Composition. One axiomatization of the system results from Cotnoir and

Varzi’s axiomatization of classical mereology when we replace the axiom of

remainder with a complete distributivity axiom, which connects the meet of an

object and a join with the join of certain meets. The meet of two objects x and y,

which we symbolize x∧ y, is the greatest lower bound under part, which is

guaranteed to be unique in the presence of antisymmetry. The complete dis-

tributivity axiom now reads:

x∧∨’ xð Þ ¼ ∨∃ zðy ¼ x∧ zð Þ∧’ zð ÞÞ:

The models of the system form a Heyting algebra (without a zero element) in

which the meet of an object x with a join of the instances of a condition ’ xð Þ is
the join of the meets of x with each of the instances of ’ xð Þ. All complete

Boolean algebras satisfy the constraint, but not all Heyting algebras are com-

plete Boolean algebras.

To summarize, Heyting mereology is the following system:

• Core Mereology + Complete Distributivity + Join (Forrest 2002b)

We motivated Heyting mereology as a congenial framework for proponents of

the hierarchical outlook who remain reluctant to take immediate part as basic on

the grounds that it is neither reflexive nor transitive. It will now be helpful to

highlight some of its distinctive features for present purposes.
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One important difference between Heyting and CEM lies in the behavior of the

complement operation. Let us define complement in terms of join, as usual:

a :¼ ∨:x ∘ a:
CEMproves the identity a ¼ a, whichmay fail in Heytingmereology. To be sure,

the system proves that a ≤ a, but it leaves open whether a may include parts,

which are themselves not part of a. Given Hierarchical Composition, singletons

provide a case in point. Since a ∘ agf , the complement agf of a singleton agf
includes neither a nor agf as parts. It follows that the join corresponding to the

condition :x ∘ a must, in fact, include agf as a part. Since ag≰ af , we conclude

a≰ a. One way to put it is that Heyting mereology is to Classical mereology

what intuitionistic logic is to classical logic. Much like intuitionistic logic

rejects the equivalence between a proposition and the negation of its negation,

Heyting mereology rejects the identification of an object with the complement

of its complement. In intuitionistic logic, we may not simply assume that the

negation of the negation of a proposition entails that proposition; similarly, in

Heyting mereology, we may not simply assume that the complement of the

complement of a given object includes that object as a part.

One feature of singletons in this framework is that they aremore than the sum

of their proper parts. For the join of the proper parts of the singleton agf is just

a, which is itself a proper part of agf . In fact, a is amaximal proper part of agf ,

while a proper part of the latter, the former is not a proper part of a proper part of

the latter. In line with Simons (1987: 108) and Cotnoir and Varzi (2021,

sec. 3.3.2), we may consider a preliminary characterization of immediate part

in terms of maximal proper part:

x⊲ y :¼ x < y∧: ∃ z x < z∧ z < yð Þ:
Given Hierarchical Composition, each of two individuals a and b would be

maximal proper parts of the class a; bgf : they each would be proper parts of

a; bgf , and none of them would be proper parts of further proper parts of a; bgf .

But whatever its merits, that would still not be the relation of immediate part at

play in Hierarchical Composition. For as Fine (1992) observes, we would like to

count a as an immediate part of a; agf gf even after we acknowledge that it is not

a maximal proper part of that class. Given Hierarchical Composition, a is

a proper part of agf , which is, in turn, a proper part of a; agf gf . Therefore, a

is not a maximal proper part of a; agf gf .

Other relations in the vicinity may approximate the relation of member more

closely than that of maximal proper part. One may, for example, take a page

from Forrest (2002b) and consider
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xRy :¼ x⊲ y∧: ∃ z x⊲ z∧ z⊲ yð Þ:
That relation seems closer to immediate part than the relation ofmaximal proper part.

For notice that :aR a; agf gf , since a⊲ agf and ag⊲ agf gff . One research

program in the area becomes to investigate the question of whether such a relation

provides us with a mathematically fruitful surrogate for the member relation.

Forrest (2002b) embarks in a similar project. One difference is that his point

of departure is closer to Liberal Hierarchical Composition, which means that the

first pass at a preliminary characterization of member is the relation of maximal

proper part of a part:

x⊴ y :¼ ∃ z x⊲ z∧ z ≤ yð Þ:
Given Liberal Hierarchical Composition, two individuals a and b would be

maximal proper parts of parts of the class a; bgf : they each would be maximal

proper parts of agf and bgf , respectively, which are themselves proper parts of

a; bgf . But notice that a is, in fact, a maximal proper part of a part of agf gf , that

is, a is a maximal proper part of agf , which is part of a�gff , even though a is not

a member of agf gf .

One reaction to this is to attempt to make do with another surrogate for the

relation of member:

xEy :¼ x⊴ y∧: ∃ z x⊴ z∧ z⊴ yð Þ:
Indeed, Forrest (2002b) observes that this relation is in fact mathematically

fruitful and supports a framework within which to interpret much of pure set

theory against the background of the existence of a sufficiently rich and varied

domain of individuals.

Hierarchical Mereology

We described Heyting mereology as a theory of the relation of part to whole

within which to mimic a relation of immediate part. The fact that the system does

not support a faithful characterization of immediate part in terms of part suggests

a different tack. That is to seek an axiomatization of hierarchical mereology as

a theory of immediate part within which to characterize part as a derived mereo-

logical relation. The plan now, that is, is to take the relation of immediate part as

basic and to characterize part in terms of it. That will allow us to do justice to the

hierarchical mereological structure of complex objects as formed out of some

immediate parts as they are bound by a relation or a principle of unity.31

31 One inspiration for these views is Aristotle’s hylomorphic conception of complex material
objects as composed of matter unified by a certain form. Fine (1999), Johnston (2006), and
Koslicki (2008) articulate contemporary variations on the same theme.

25The Mereology of Classes

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
09

22
41

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009092241


What is perhaps the most developed framework for hierarchical mereology

comes from Fine (1999). Fine originally operates in an interpreted first-order

language with predicates of different adicities and a primitive predicate ≤ for

part. Fortunately, as Jacinto and Cotnoir (2019) observe, it is not difficult to

reformulate the theory with a primitive predicate for immediate part for which

we use the symbol ≪ .32 The operation of rigid embodiment combines

certain objects into a mereological complex, which Fine calls a rigid

embodiment whose immediate parts stand in certain relations to each other.

The informal core of the theory of rigid embodiments is this. Given some

objects a; b; c; . . . related by a relation R, there is a rigid embodiment

a; b; c; . . . =R composed of a; b; c; . . . and R. The objects a; b; c; . . . and the

relation R are its immediate parts. The objects a; b; c; . . . are material parts of

the embodiment, and R is the principle of embodiment.

A water molecule would be a paradigmatic example of a rigid embodiment,

which consists of two hydrogen atoms linked with an oxygen atom by certain

covalent bonds. The two hydrogen atoms and the oxygen atom are its material

parts, and the link between them is its principle of embodiment.

Fine (1999) lays down six postulates for rigid embodiments. Two specify their

existence and identity conditions, one governs their interaction with location, and

three more postulates govern their interaction with the relation of part to whole.

Here is a reformulation of the postulates in terms of immediate part.

R1. (Existence): a; b; c; . . . =R exists atw if, and only if, R relates a; b; c . . . atw.

R2. (Location): If a; b; c; . . . =R exists at w, then a; b; c; . . . =R is located at

a point p in w if, and only if, at least one of a; b; c . . . is located at p in w.

R3. (Identity): a; b; c; . . . =R ¼ a0; b0; c0; . . . =R0 if, and only if, a ¼ a0, b ¼ b0,
c ¼ c0, . . ., and R ¼ R0.

R4. (Material Immediate Part): Each of a; b; c; . . . are immediate parts of

a; b; c; . . . =R. They each are a material immediate part of the embodiment.

R5. (Formal Immediate Part): R is an immediate part of a; b; c . . . =R. The

relation is a formal immediate part of the embodiment.

We may now characterize the relation of part as the reflexive closure of the

ancestral of immediate part: x is part of y if, and only if, x is an ancestral

immediate part of y or x ¼ y.

32 They provide an independent argument for the indefinability of immediate part in terms of part in
the system and characterize part as the reflexive closure of the ancestral of immediate part.

26 The Philosophy of Mathematics

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
09

22
41

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009092241


One further constraint makes sure that a rigid embodiment has no parts that

are not themselves parts of either its immediate material parts or its principle of

embodiment.

R6. A part of a; b; c; . . . is a part of one of a; b; c; . . . or a part of R.

Some clarification is in order. Notice first that postulates R2 and R5 will play

a minimal role in what follows. The purpose of R2 is to secure appropriate

locations for rigid embodiments, which are inherited from its immediate parts.

Postulate R5 gives expression to the thought that the form that unifies certain

objects into an embodiment is itself an immediate part of the embodiment.

While that may strike some as an attractive thought, it is not universally

accepted by subscribers to hierarchical perspective, for example, Johnston

(2006). More importantly for our purposes, it seems to be in conflict with the

letter of Hierarchical Composition.

The existence and identity postulates should presumably be understood

against the background of an independent theory of relations, which constraints

the interpretation of the predicates of the language. They are, for example,

sensitive to the individuation conditions for relations. To use Fine’s own

example, suppose you make a distinction between the relation one object

bears to another when the first is placed above the second and the relation one

bears to another when the second is placed below the first. That would impose

very fine-grained identity conditions for rigid embodiments: the rigid embodi-

ment whose members are a and bwhen a is above bwould be different from the

rigid embodiment whose members are a and b when b is below a.33 There is

a similar question for the combination of existence and identity, which may be

thought to collapse into an inconsistent principle on a theory of relations on

which no matter what objects may be, there are related by at least one relation.34

Indeed, Fairchild (2017) raises a similar difficulty for the assumption that no

matter what an object may be, for every property F the object exemplifies, there

is a rigid embodiment of the form a=F.

The theory of rigid embodiments is supplemented with an account of variable

embodiments. The core of the theory of variable embodiments is this. Given an

individual concept F, there is a variable embodiment =F=, which is manifested

by whatever objects are F at different times. Fine takes a car to be a prototypical

example of a variable embodiment, one which is at a given time manifested by

33 Fine explains how to obtain more coarse-grained identity conditions if one reformulates the
identity postulate in terms of states of affairs: a; b; c; . . . =R ¼ a0; b0; c0; . . . =R0 if, and only if, the
state of affairs, which consists of a; b; c; . . . standing in R is the same as the state of affairs, which
consists of a0; b0; c0; . . . standing in R0.

34 We will discuss this limitation in what follows.
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a rigid embodiment whose immediate members are different car parts such as

the chasis, the engine, the wheel, and so on, and whose form is a certain relation

in which the different immediate parts stand to each other. He later gives a series

of postulates for variable embodiments, which would take us too far afield from

our focus. Since hierarchical composition invites the identification of classes of

rigid embodiments of a certain sort, and variable embodiments will play no role

in the implementation of the proposal.

In order to formulate a perfectly general theory of embodiments, we ascend to

a second-order language with a binary relation symbol ≪ for immediate part

and a range of second-order variables Xn of the same syntactic category as n-

place predicates. The ascent to a second-order language is part of what will

allow us to offer an explicit definition of part in terms of immediate part in line

with Jacinto and Cotnoir (2019: 933):

x ≤ y :¼ 8X ðð8u x≪ u→Xuð Þ∧8u8tð Xu∧ u≪ t→Xtð ÞÞ→XyÞ∨x ¼ y :

That is, x is part of y if, and only if, x stands in the ancestral of immediate part to

y or x ¼ y. Or, equivalently, x stands in the weak ancestral of immediate part to

y.

We now regiment the rest of the principles in line with Jacinto and Cotnoir

(2019). We use~xn as abbreviations for finite sequences of variables x1; . . . ; xn.
35

We have omitted the initial quantifiers in order to enhance readability, but notice

that we have the resources to express each axiom as a universal generalization.

R1 ∃ x x ¼~yn =R
n ↔ Rn~yn

R3 ∃ x x ¼~yn=R
n→ð~xn=Rn ¼~ym=S

m ↔ð ∧
1 ≤ i ≤m

xi ¼ yi ∧Rn ¼ SmÞÞ
R4 ∃ x x ¼~yn=R

n→ ∧
1 ≤ i≤m

xi ≪ ~xn=R
n

R5 ∃ x x ¼~yn=R
n→Rn ≪ ~xn=R

n

R6 ðx ≤~yn=Rn→ ∨
1 ≤ i ≤m

x ≤ yiÞ∧ ðS ≤~yn=Rn→ ∨
1 ≤ i ≤m

Sm ≤ yiV SmRnÞ

This provides a candidate framework for an articulation of Hierarchical

Composition similar to the one Caplan, Tillman, and Reeder (2010)

undertake.36 One apparent limitation of the provisional framework we have

outlined is that we have by default restricted attention to rigid embodiments

composed of finitely many immediate parts as they exemplify a finitary relation,

35 They qualify the antecedent of R3, R4, and R5 to take into account the fact that a rigid
embodiment may not exist at a time at which its immediate parts exist but they are not
appropriately related in accordance to the principle of embodiment.

36 We have omitted the formulation of R2, which is not directly relevant to the present project.
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and one may want to allow for a more liberal form of existence for rigid

embodiments. The resources of plural logic will eventually allow us to do just

that.

We have considered first-order formulations of each mereological frame-

work, but they receive a more perspicuous formulation against the background

of a plural extension of the language.

Plural Logic

Given a first-order language L, we consider the plural expansion that results

when we extend its vocabulary with a range of plural variables xx, yy, zzwith or

without subscripts and a binary predicate x≺ xx with a singular and a plural

argument. That marks a crucial difference with respect to binary predicates

flanked by singular arguments such as x ≤ y or x2 y. The plural variables are

formal counterparts of natural language plural pronouns such as ‘they’ and

‘them’ and they are bound by a plural quantifier as in formulas of the form 8xx’
or ∃ xx’. Atomic formulas of the form x≺ xx are read: “x is one of xx”.

What makes plural quantification distinctive is that it is in principle irredu-

cible to covert singular quantification over the domain. The plural expansion of

the language of set theory contains the formula

∃ xx8x x≺ xx↔ x =2 xð Þ;
which tells us that there are some sets such that a set is one of them if, and only

if, it is non–self-membered. But notice that to claim that some sets are all and

only non–self-membered sets is not to claim that some setlike object contains all

and only non–self-membered sets. For only the first claim is true when we

quantify over the domain of sets and exclude setlike objects that are not sets.

This is indeed how George Boolos motivated the distinctive feature of plural

quantification in Boolos (1984) and Boolos (1985).

Let us pause for a terminological aside. Even if we take to heart the point that

plural quantification is not covert singular quantification over the domain, we

will sometimes and for ease of communication speak in the singular of

a plurality of such and such objects. While such talk is grammatically singular,

it is officially eliminated in terms of plural reference to the such and such

objects.

We read atomic formulas of the form x≺ xx as: “x is one of xx”, and we use ≺

to define two more relation symbols flanked by plural terms:

xx≼ yy :¼ 8z z≺ xx→z≺ yyð Þ
xx ≈ yy :¼ xx≼ yy∧ yy≼ xx

xx≼ yy is read: “xx are among yy”, and xx ≈ yy is read: “xx are the same as yy”
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One more clarification. The plural quantifier ∃ xx is read as “there are some

objects xx,” but this in turn is interpreted differently by different authors. Some

take it to mean that there are two or more objects xx, whereas it is more common

to understand it to mean that there is one or more objects xx. Still others interpret

it to mean that there are zero or more objects xx. In what follows, we will take it

to mean that there is one or more objects. Florio and Linnebo (2021) codify the

commitment by means of an axiom:

8xx ∃ y y≺ xx:

We are now in a position to provide plural formulations of axioms of join and

fusion in the expanded plural language. We define the join of some objects xx as

their minimal upper bound under part, which, given antisymmetry, is unique if it

exists. Likewise, we declare an object y to be a fusion of some objects xx if y

includes everything in xx as a part and includes only parts that overlap with them.

y ¼ ∨xx :¼ 8x x≺ xx→x ≤ yð Þ∧ 8zð8x x≺ xx→x ≤ zð Þ→y ≤ zÞ
F xx; yð Þ :¼ 8x x≺ xx→x ≤ yð Þ∧ 8zðz ≤ y→ ∃ x x≺ xx∧ y ∘ xð ÞÞ
There are plural forms of the axioms of join and fusion, respectively, but their

content is sensitive to the range of plural variables to range. In order to at least

match the expressive power of the first-order schema, we should make sure that

no matter what condition ’ xð Þ framed in the language of mereology may be,

some objects are exactly those which satisfy the condition ’ xð Þ.
Plural logic generally includes an axiom of plural comprehension

according to which there are, for each nonvacuous condition ’ xð Þ, where
x occurs free, some objects, which are exactly those objects that satisfy the

condition:

∃ x’ xð Þ→ ∃ xx8xðx≺ xx↔’ xð ÞÞ Plural Comprehension

In the plural expansion of the language of set theory, given the condition x =2 x,

which is not vacuous, plural comprehension delivers the existence of some

objects, which are exactly the non–self-membered objects:

∃ x’ xð Þ→ ∃ xx8x x≺ xx↔ x =2 xð Þ:
The axiom schema of plural comprehension is generally combined with

another axiom schema of plural indiscernibility, which encodes the presup-

position that plurals are extensional. That is, whatever is true of some

objects remains true of some other objects if they are coextensive with the

former:

xx ≈ yy→ðΦ xxð Þ↔Φ yyð ÞÞ Plural Indiscernibility
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This axiom is almost universally accepted and embodies the thought that plurals

are extensional.37

What is perhaps the fundamental theorem of plural logic gives voice to the

Cantorian fact that there are strictly more pluralities than objects. But it takes

some effort to even make sense of that claim in a plural language. We have been

adamant that talk of pluralities is to be officially eliminated in favor of plural

talk, but it is not obvious how to do that in this case. In order to properly frame

the plural generalization of Cantor’s theorem, we must explain how to make

sense of cardinality comparisons between the range of plural variables and that

of singular variables. Since pluralities are not objects, we are not in a position to

explain such comparisons in terms of the existence or nonexistence of a map

from the range of plural variables to the range of singular variables. For that

would require one to move beyond the expressive resources of the plural

expansion of a first-order language.

Instead, following Shapiro (1991: 104), we quantify over binary relations

over the domain in order to simulate such maps. If R is a binary relation, we

extract a map from the plural into the singular domain as follows: Rmaps xx into

x if and only if they are all and only objects in the domain of R, which the

relation pairs with x. We can now make sense of an injection of the range of

plural variables into that of singular variables in terms of the existence of

a binary relation R such that

8xx ∃ x8y Ryx↔ y≺ xxð Þ:
Such a relation may relate the members of a given plurality to more than one

object, but notice that if such a relation existed, then wewould be in a position to

inject pluralities into objects.

Alas, there is a plural generalization of Cantor’s theorem:

Proposition 3.1 ∃ x∃ y x 6¼ y→:8xx ∃ x8y Rxy↔ y≺ xxð Þ
In other words, if there is more than one object, then no binary relation will be

able to encode an injective map from the range of plural variables into the

domain.

Proof Outline Suppose a binary relation R encodes an injective map from the

range of plural variables into the domain. Plural Comprehension now delivers:

∃ x:Rxx→ ∃ xx8x x≺ xx↔:Rxxð Þ:

37 One exception is Uzquiano (2018), which generalizes plural talk to make allowance for coex-
tensive plural embodiments to remain distinct on the grounds that they have a distinct modal
profile.
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Since there is more than one object, the condition :Rxx is not vacuous, which
means:

∃ xx8x x≺ xx↔:Rxxð Þ:
Let rr be such objects and let r be the object into which R maps rr:

8y Rry↔ y≺ yyð Þ:
Universal instantiation now gives us

Rrr↔:Rrr;
whence a contradiction follows.

One immediate consequence of the theorem is the inconsistency –modulo the

existence of more than one object – of the principle that no matter what some

objects may be, there is a set of them, which Florio and Linnebo (2021) have

recently discussed:

8xx ∃ x8y y2 x↔ y≺ xxð Þ:
The problem arises when we interpret Rxy in terms of 2, and the standard

approach to this observation is to regard it as a limitative constraint on the

interaction of plural logic and set theory. What is distinctive of the outlook

Florio and Linnebo (2021) advocate is precisely to reverse the situation and

fault the uncritical adherence to instances of plural comprehension for the

inconsistency. They argue instead that plural logic should indeed be able to

accommodate Plural Collapse at the cost of Plural Comprehension. Critical

Plural Logic does not underwrite the instances of comprehension we used in

order to derive the plural formulation of Cantor’s theorem, and it provides yet

another fallback that is immune to the limitative constraints of the next section.

Limitative Constraints

We will now operate within a plural mereological framework. David Lewis, for

example, articulated his defense of the Main Thesis against the background of a

plural formulation of CEM, andwewill frame part of the discussion ofHierarchical

Composition against the background of a plural formulation of the theory of rigid

embodiments. Each approach, however, is subject to important limitative con-

straints that are closely related to the fundamental theorem of plural logic.

Classical Extensional Mereology

One important difference between pluralities and fusions is that fusions need

not come with a unique decomposition into parts: a fusion of statues is a fusion

of torsos, heads, and limbs as much as it is a fusion of statues even if most of
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those parts are not themselves statues. Matters are different for pluralities,

since a plurality of statues consists exclusively of statues and not of torsos,

heads, or limbs. In this respect, pluralities behave less like fusions and

more like classes.

On occasion, we are able to use fusions to mimic the behavior of classes.

Lewis (1970) observed that in favorable circumstances, if we use a condition θ

to distinguish some parts of a fusion, we may find that the fusion comes with

a unique decomposition into θ-parts. Fusions of θ-parts behave much like

pluralities of θ-objects, and the relation a θ-part bears to a fusion of θ-parts is

perfectly parallel to the relation a θ-object bears to a plurality of θ-objects. For

ease of exposition, we will write that a condition θ is a filter if, and only if,

a fusion of θ-parts has a unique decomposition into θ-parts.

The condition 8y y ≤ x→x ≤ yð Þ, which corresponds to atomicity, is a filter.

The fusion of some atoms has a unique decomposition into atoms.38 This

is because no atom is part of another atom, and no atom is part of a fusion

of atoms that do not include it. More generally, since no two atoms

overlap, given the definition of fusion, a fusion of some atoms is one

and the same as a fusion of others if, and only if, each of the former is one

of the latter and vice versa.

Lewis (1970) noticed that when the language is expanded to formulate the

condition of being a maximal spatiotemporal connected object, we find that

maximal spatiotemporal connected parts behaved much like classes of maximal

spatiotemporal connected objects and used this observation to explain how to

exploit it to mimic the behavior of classes in a purely mereological framework.

One limitation of the method is that there is no reason whatever to think that all

objects are in fact θ-objects, whether mereological atoms or maximal spatio-

temporal connected parts or what have you.

One may hope to do better if one is able to find a θ-code for each and every

object. That is, one would do better if one could a θ-code to each object and treat

fusions of θ-parts as surrogates for classes of the objects they encode. That is, in

fact, part and parcel of the approach Lewis takes in Lewis (1991) where the

language of mereology is expanded to include a singleton operation. Since, for

Lewis, singletons are atoms, a fusion of singletons has a unique decomposition

into singletons and the relation an object bears to a fusion of singletons if its

singleton is part of it is akin to the member relation. The singleton operation

provides a code for each object, which allows us to use fusions of such codes to

play the role of classes.

38 CEM makes sure the fusion is unique.
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There is a limitative result closely related to plural Cantor. Given a filter θ, we

write that ρ is a total θ-coding if, and only if, ρ is an operation that satisfies three

conditions:

Totality : ∃ y y ¼ ρ xð Þ
Injectivity : ρ xð Þ ¼ ρ yð Þ→ x ¼ y

θ-coding : θðρ xð ÞÞ
Totality makes sure that ρ provides a code for each object, whereas Injectivity

ensures that different objects are assigned different codes. The third, and last

condition, requires that the codes be θ-objects. We are now in a position to state

the first limitative result:

Proposition 3.2 Given a filter θ, CEM is, modulo the existence of more than

one object, inconsistent with the existence of a total θ-coding.

Proof Outline If θ is a filter, then a total θ-coding would enable us to define

a binary relation R for which

8xx ∃ x8y Rxy↔ y≺ xxð Þ:
Given some objects xx, we would let x be the fusion of their θ-codes, and we

would define:

Rxy :¼ ρ yð Þ ≤ x:
If y ≤ xx, the ρ yð Þ, which is a θ-code for y would be a θ-part of x, which is the

fusion of θ-codes of each of xx. On the other hand, if y is a θ-part of x, which is

the fusion of θ-codes of each of xx, then given the fact that θ is a filter, we would

have that y is one of xx.

The existence of such a binary relation is now in direct conflict with Cantor’s

theorem for plural logic.

One corollary of this observation is the observation Gideon Rosen made in

Rosen (1995), and recently rehearsed in McCarthy (2015), where θ uð Þ is

8x x ≤ u→ x ¼ uð Þ, that is, u is a mereological atom. One immediate conse-

quence of the Main Thesis is that singletons are atoms, which means that as

a corollary, we find that if theMain Thesis is true, then there is no total coding of

objects by singletons. The problem is more general, and it generalizes to other

approaches on which being a singleton is in fact a filter. We do not evade the

difficulty if we simply reject atomicity on the grounds, for example, that all

singletons share a common part in line with the suggestions Armstrong (1991)

and Caplan, Tillman, and Reeder (2010) make. The former suggest that

singletons include the null set as a further part, whereas the latter suggests

that singletons have parts other than classes. But the threat of inconsistency
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persists provided that we maintain that the condition of being a singleton is

a filter and a fusion of singletons continues to have a unique decomposition

into singletons.39

Hierarchical Mereology

We now look at a plural variation on the theory of rigid embodiments introduced

earlier. We expand a first-order language with a primitive predicate ≪ for

immediate part into a plural language supplemented with a stock of plural

predicates P;Q; . . . with a plural argument. These plural predicates express

attributes some objects may exemplify. One may now reformulate some of

Fine’s postulates in the enriched plural language. The plural formulation of

the existence postulate posits a rigid embodiment whenever some objects xx

exemplify some attribute X :

PR1. (Plural Existence): xx=P exists at w if, and only if, Pxx at w.

PR2. (Location): If xx=P exists at w, then xx=P is located at a point p in w if,

and only if, at least one of xx is located at p in w.

PR3. (Plural Identity): xx=P ¼ yy=Q if, and only if, xx ≈ yy, and P ¼ Q.

This last postulate is, of course, sensitive to what we take to be the identity

conditions for attributes. One option is to deem P and Q to be identical if they

are necessarily coextensive in a suitably expanded language with a modal

operator □ for metaphysical necessity:

□ 8xx Pxx↔Qxxð Þ→P ¼ Q:

More fine-grained views of the identity conditions for attributes would require

yet a different interpretation of the postulate, but the difference is not important

for present purposes.

The next principle specifies the immediate parts of a rigid embodiment:

PR4. (Immediate Part): Each of xx are immediate parts of xx=P.

We do not offer a plural formulation of the fifth postulate because nothing in

the letter of Hierarchical Composition requires a plural attribute P to be an

immediate part of the rigid embodiment xx=P.

We continue to understand part as the weak ancestral of part, which will now

be couched in plural terms. Armed with a definition of part in terms of proper

part, we formulate one final constraint on the natura of rigid embodiments

39 Caplan, Tillman, and Reeder (2010) do not subscribe to classical mereology, and they do not
identify a class with a fusion of singletons but rather a rigid embodiment of its members as they
exemplify some attribute.
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according to which the parts of the immediate parts of a rigid embodiment

exhaust the range of its parts:

PR6. (Part) A part of xx=P is a part of one of xx.

Here is the official definition of part in terms of immediate part:

x ≤ y :¼ 8xxð 8u x≪ u→ u≺ xxð Þ∧ð
8u8t u≺ xx∧ u≪ t→ t≺ xxð Þ

� �
→ y≺ xxÞ∨ x ¼ y :

What follows is the plural formulation of the four postulates we adopt as part of

our official formulation of hierarchical mereology:

PR1 ∃ x x ¼ xx=P↔Pxx
PR3 ∃ x x ¼ xx=P→ xx=P ¼ yy=Q↔ xx ≈ yy∧P ¼ Qð Þ
PR4 ∃ x x ¼ xx=P→8x x≺ xx→ x≪ xx=Pð Þ
PR6 x≤ xx=P→∃ y y≺ xx∧ x≤ yð Þ

The combination of the existence and identity postulates now places us on

the brink of inconsistency on abundantist views of attributes. For let E be

a plural attribute some objects exemplify just in case each of them exists:

□ ðExx↔ 8x x≺ xx→ ∃ y x ¼ yð ÞÞ:
No matter what some objects may be, such a plural attribute will bind them into

a rigid embodiment xx=E, which, given PR1, exists whenever the objects in

question exist. But given PR2, unless some objects xx coincide with some

objects yy, the rigid embodiments xx=E and yy=E, respectively, will differ

from each other, xx=E 6¼ yy=E.

Proposition 3.3 The plural formulation of the existence and identity postulates

is inconsistent with the existence of more than one object.

Proof Outline The plural formulation of the existence and identity postulates

enable us to define a binary relation R for which

8xx ∃ x8y Rxy↔ y≺ xxð Þ:
For letE be the attribute some objects exemplify just in case they each exist. Define:

Rxy :¼ ∃ xx y ¼ xx=E∧ x≪ yð Þ:
On the one hand, given the plural identity postulate, the immediate parts of

a rigid embodiment of the form xx=E are exactly the objects x such that x≺ xx.

On the other hand, given some objects xx, they will trivially satisfy the condition

xx≼ xx, which means that there is, according to the plural identity postulate,

a rigid embodiment xx=E, which consist of those objects to the extent to which

they satisfy the condition.
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The existence of such a relation would now be in direct conflict with Cantor’s

theorem for plural logic.

This is in line with the observation Caplan, Tillman, and Reeder (2010) make

on p. 45. They propose instead to replace the plural existence postulate with one

on which rigid embodiments are formed in stages of a cumulative hierarchy.

There is first a level of individuals without immediate parts. At the next level,

we find rigid embodiments of individuals bound by different attributes. At the

next level, we find rigid embodiments of individuals and/or rigid embodiments

found at some earlier level bound by different attributes, and so on. For a more

compact formulation of the thesis, we write that rigid embodiments are formed

in stages. Given some rigid embodiments and/or individuals found at some

stage, there is a rigid embodiment whose immediate parts are exactly those

objects as they exemplify a given attribute.

4 The Main Thesis

The time has come to refine the two broad approaches to the mereology of classes

weoutlined at theoutset.One stance identifies theparts of a classwith its subclasses,

whereas the other endows classes with a hierarchical mereological structure: their

parts include theirmembers, themembers of itsmembers, and so forth.Wewill now

explain some of the choice points each proposal faces and we will discuss the

prospects of a fruitful implementation of each stance. We devote this chapter to

implementations of the first approach of which Lewis (1991) and Lewis (1993) are

prime instances. One important contrast, for Lewis, is that between classes, which

havemembers, and individuals, which do not. Lewis proceeds to classify the empty

set as an individual rather than a class, but the decision is meant to be inconsequen-

tial; his suggestion is just to choose one individual to play the role of the empty set.

That means that the Main Thesis remains largely silent when it comes to the

mereological structure of the empty set – except for the fact that it is neither part

of a class nor does it include a class as a part. The concern of theMain Thesis is the

mereological structure of classes, which are exactly those objects that have mem-

bers. We now look at the question of how to motivate the Main Thesis.

Motivation

In Lewis (1991) and Lewis (1993), David Lewis derives the Main Thesis from

two other theses:

The First ThesisOne class is part of another if, and only if, the first is a subclass

of the second.40

40 See Lewis (1991, 4).

37The Mereology of Classes

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
09

22
41

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009092241


The First Thesis is supposed to derive support from a variety of consider-

ations. We mentioned at the outset that it accords well with certain aspects of

common usage: we use the word ‘part’ to refer to the relation a subclass bears to

a class, for example, the class of axioms is part of the class of theorems of

a system. But these considerations have limited purchase, especially when they

are set against other aspects of common speech: we often describe classes as

composed of their members, which would suggest their members are further

parts of the class. That, however, would be counter to the First Thesis given that

not all members of a class are subclasses of it. So, subscribers to the First Thesis

must dismiss such talk as nonliteral or as a figure of speech.

One common source of support for the First Thesis is the observation that

much like part, the subclass relation is a partial ordering of classes, one that

satisfies strong supplementation and fusion at least against the background of

certain theories of classes. Furthermore, much like mereological fusions, clas-

ses submit to more than one decomposition into subclasses. The formal analogy

between part and subclass is meant as just another piece of evidence, albeit

inconclusive, for the identification between subclass and the relation of part to

whole on the domain of classes.

The First Thesis leaves open whether a class may include objects other than

its subclasses as further parts, for example, individuals such as the null set or

fusions of individuals and classes. This is exactly the question that the Second

Thesis is supposed to settle:

The Second Thesis No class has any part that is not a class.41

The parts of a class are exclusively its subclasses. Against the background of

classical mereology, Lewis derives the Second Thesis from the First Thesis in

combination with three other theses:

The Division Thesis Everything is an individual, a class, or a fusion thereof.

The Priority Thesis No class is part of an individual.

The Fusion Thesis A fusion of individuals is an individual.

For Lewis, the Priority Thesis and the Fusion Thesis are meant to capture the

thought that individuals are prior to classes. We may not know yet how

individuals will figure in the construction of classes, but we know that they

themselves are composed of further individuals.

The argument proceeds by reductio. For the Second Thesis to fail, there

would have to be a class X , which includes a nonclass as a part. Given the

41 See Lewis (1991, 6).

38 The Philosophy of Mathematics

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
09

22
41

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009092241


Division Thesis, the nonclass in question must be either an individual or a mixed

fusion of individuals and classes. Either way, X must include an individual as

a part. Consider the fusion u of individuals that are parts of X , which, by the

Fusion Thesis, must itself be an individual. By remainder, wemay consider their

mereological difference X \u, which is the fusion of parts of X that are not parts

of u. Since X \U has no individuals as parts, it must, by the Division Thesis, be

a class. It follows that the original class X is, in fact, a fusion of a class X \u and

an individual u. The First Thesis tells us that since X \u is a part of X , it is one of

its subclasses. But being a proper subclass of X , it must fail to contain a member

A of X \u. Let Agf be the singleton of A. By the First Thesis, Agf is part of X but

not part of X \u; moreover, by the Priority Thesis, Agf is not part of u. So, by

strong supplementation, Agf has a proper part B that does not overlap u. No

individual is part of B, which means that B is a class by the Division Thesis. By

the First Thesis, B is a proper subclass of Agf , which is inconsistent with the fact

that singletons have no proper subclasses.

It is important to highlight the role of CEM in the argument. Even if Lewis’

opponents are prepared to acknowledge a derivative sense in which subclasses

are parts of classes, they might remain unmoved by the use of strong supple-

mentation in the subsequent argument. It is true that the combination of the First

Thesis with the three subordinate theses entails the Second Thesis against the

background of CEM, but at the end of the day, it is better to acknowledge that

the best case for the Second Thesis is that it ultimately leads to an attractive and

powerful theory of classes.

Another consideration may, however, be brought to bear on the question of

whether a class has parts other than its subclasses. One may argue that single-

tons have no proper parts on the grounds that if they do, they should include

their sole member. But that would be in tension with the view that a doubleton

a; bgf is a fusion of two singletons agf and bgf . The problem is this: if

singletons include their members as a proper part, then a < ag < agf gff ,

which means that agf gf is the join of agf and agf gf . Therefore,

agf g ¼ a; agf gff and a ¼ agf , which is generally not true. The argument

just now outlined made no use of supplementation principles, just the assump-

tion that a singleton has its sole member as a part and the stipulation that

a doubleton is the join of the singletons of its members.

One apparent advantage of the Main Thesis is that it helps alleviate the

mystery of classes by subsuming them under the category of fusions, which,

for Lewis at least, is unproblematic and perfectly understood. Classes, unfortu-

nately, are fusions of singletons, which are less well understood. The Main

Thesis tells us that a class has a decomposition into singletons, which are

mereologically simple. To the extent to which they lack further internal
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mereological structure, they remain a black box from a strictly mereological

standpoint, which means that we have no means to recover their members from

their mereological structure alone.

The Main Thesis reduces the mystery of classes to the mystery of singletons,

which Lewis seems to find insurmountable. It follows from the Second Thesis

that the sole member of a singleton class is not part of it, which means that there

is a nonmereological link between the sole member of a singleton and the

singleton. He claims we know nothing when it comes to the nature of singletons

or that of the nonmereological relation between it and its sole member. Oliver

and Smiley (2006) and Oliver and Smiley (2018) take an even bleaker view of

singletons and prefer to confront the original mystery.42 Since singletons are

classes, given the Main Thesis, they have no parts other than themselves, and

are therefore mereological atoms. This makes the nonmereological relation an

object bears to its singleton all the more mysterious.

The burden of the nonmereological link between an object and its singleton

becomes more tolerable when set against the range of benefits they afford. We

know from Proposition 2.1 that given the Main Thesis, there is no strictly

mereological definition of member in terms of part. The situation changes in

the presence of a singleton operation, which allows us to definemember in terms

of the nonmereological link between an object and its singleton and part: to be

a member of a class is to have a singleton that is a part of the class. To the extent

to which the nonmereological link between an object and its singleton is

required in order to make sense of member, which is the central concept of set

theory, Lewis thinks we have no choice but to accept it. Set theory – and the rest

of mathematics – rests on firmer ground than the epistemological concerns we

may raise against them.

One way to retain the benefits of singletons without the epistemological

baggage they carry with them is to opt for a structuralist approach to the

singleton operation. No knowledge of the nature of singletons is required in

order to acknowledge that a singleton operation must satisfy a variety of

structural conditions set forth in the axioms of set theory. The structuralist

account of singleton allows us to reduce the theory of classes to the combination

of classical mereology and a general theory of singleton.

Other philosophers are more sanguine when it comes to the prospects of an

intelligible account of the singleton operation and the nonmereological link

between an object and its singleton. Largely moved by Lewis’ epistemological

concerns, they are reluctant to take the singleton operation at face value as

a special instance of a mathematical set of operation, which, according to Gödel

42 Kanamori (2003) discusses the history of singletons in set theory.
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(1947) for example, constitutes the subject matter of set theory. While not all of

them subscribe to the Main Thesis, their proposals could nonetheless be com-

bined with it. David Armstrong identifies singletons with certain states of affairs

in Armstrong (1991) and John Bigelow identifies them with haecceities in

Bigelow (1993).43 Other candidates are not difficult to isolate: self-identity

tropes in the manner of D. C. Williams, tropes (Forrest 2002a), and rigid

embodiments (Caplan, Tillman, and Reeder 2010).44

What these approaches have in common is that they require caution when

combined with the Main Thesis. For singletons are categorized as mereological

atoms according to the Main Thesis, which means that they form a filter. To the

extent to which the singleton operation provides a total coding of objects into

fusions of atoms, we find ourselves in direct conflict with Proposition 3.2, which

is the first limitative result we recorded in the previous section.

A Dilemma

David Lewis takes both CEM and the Main Thesis as unproblematic and well-

understood, but one faces a dilemma when combining them with a theory of the

singleton operation. For the Main Thesis entails that singletons are atoms, and

a total injection of objects into singletons is, modulo the existence of more than

one object, inconsistent with CEM.45 Since the Main Thesis is nonnegotiable

for present purposes, we face a dilemma. We should either restrict the scope

of the singleton operation or else we should be prepared to weaken CEM. The

first option fits well with the structuralist approach to singletons David Lewis

embraces in Lewis (1991) and Lewis (1993), whereas the outlook of Armstrong

(1991) and Forrest (2002a) fits better with the second option. They both opt for

a reduction of the singleton operation to one they take to be better understood,

but it is in each case difficult to motivate a restriction in the scope of the

operation they choose for the reduction.46

Our formulation of the dilemma sets aside more radical responses to the

problem such as a fallback to critical plural logic or even to weaker nonclassical

43 However, Bigelow departs from the Main Thesis to the extent to which he proceeds to identify
sets with plural haecceities as opposed to sums of singular haecceities. The point remains that
a proponent of the Main Thesis could still make use of the identification of singletons with
singular haecceities.

44 (Caplan, Tillman, and Reeder 2010) are not proponents of the Main Thesis; instead, they
subscribe to Hierarchical Composition as we characterized it at the outset.

45 This is a direct consequence of Proposition 3.2 according to which there is no total injective
operation whereby one may assign a code to every object. The purpose of those codes, you may
remember, had been to enable us to recover the codes uniquely from their fusions. Lewis’ plan is
to use singletons to play the role of codes.

46 Armstrong (1995), in fact, hints at a restriction on the making of singletons in response to the
limitative result reported by Rosen (1995).
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logics. Indeed, the problem evaporates when one follows Florio and Linnebo

(2021) and abandons one’s adherence to instances of plural comprehension.

While that might in the end be a live option, the purpose of next two sections is

to check how far each horn of the dilemma might take one against the back-

ground of the current framework.

Let us look at each option in turn.

Classical Extensional Mereology Unbound

This is the strategy David Lewis pursues in Parts of Classes. One reason for the

choice is that he regards the axioms of CEM as well understood, unproblematic,

and certain. The part-to-whole relation is a topic-neutral relation that applies to

all objects, regardless of their ontological category, and the operation of mereo-

logical composition is unmysterious and unrestricted.47

Since, for Lewis, the axioms of CEM are akin to the principles of logic, they

should be accorded a similar level of generality. Given that these axioms are, for

him, far better understood than the making of singletons has ever been, the

choice is perfectly clear. It would, for Lewis, be unduly drastic to weaken

mereology in order to keep the making of singletons, which is much less well

understood, unbounded.

Lewis identifies MK as a mathematical target and makes a distinction

between proper and improper classes or sets. What sets proper classes apart –

in line with a distinction due to John von Neumann – is that they are not

members, whence it follows that they do not have a singleton. So, Lewis’

strategy fits well with a venerable account of the distinction between sets and

classes, which he is able to recover in his system. But that means that the

strategy inherits some of the difficulties generally associated with von

Neumann’s approach. In particular, we find that the nature of proper classes

remains elusive. What exactly prevents a class from having a singleton and

being a member? There is no completely satisfactory answer to this question.

Instead, John von Neumann combined his distinction between sets and classes

with a limitation of size hypothesis: a class is proper if, and only if, it is in one-

to-one correspondence with the universal class. While this criterion helps us

sort classes extensionally into proper and improper, it provides no explanation

of the fact that such proper classes as the class of all classes or the class of all

non–self-membered classes fail to be members of other classes. In other words,

it is far from understood how exactly size alone would prevent the formation of

a singleton for a proper class.

47 He has an independent argument for this in Lewis (1986), which is known as the argument from
vagueness.
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The situation would have been different had we identified ZFC as a target.

For that system posits no proper classes in addition to sets. But this is not on the

cards for Lewis, who regards the axiom of fusion as unproblematic and certain.

For an application of fusion will enable us to form the fusion of singletons of

non–self-membered sets, which cannot itself be a set on pain of contradiction.

Since the axiom of fusion is unnegotiable for Lewis, he has no choice but to

countenance proper classes as well as sets.

Given the lack of special epistemic access to the nature of singletons, Lewis

opts for a structuralist account of the nonmereological relation an object bears to

its singleton, one which is designed to help us recover the axioms of MK.We no

longer aspire to grasp the nature of the nonmereological relation an object bears

to a singleton, but rather posit the existence of relations with the formal features

required for a reconstruction of the theory of classes within mereology

expanded with the theory of singletons.

One way to proceed is to introduce the concept of a singleton function, which

is just a partial injection from objects to mereological atoms to which they bear

the nonmereological relation in question. Lewis sets a number of formal

constraints on singleton functions designed to help us recover the axioms of

MK. These constraints are informed by the limitation of size hypothesis, which

guarantees that the function is not defined on large fusions of singletons. To be

more precise, a singleton function is, for Lewis, a partial injection s such that

• its range consists of mereological atoms called s-singletons

• its domain consists of small fusions of s-singletons and objects called

s-individuals without s-singletons as parts

• all objects are generated from the s-individuals by iterated application of s

and mereological fusion.

A fusion is small if and only if its atomic parts are few by which we mean, as usual,

that they are not in one-to-one correspondence with all the atoms. Otherwise, the

fusion is large. Notice that the distinctions of size should be understood in terms of

the existence or nonexistence of certain functions, which means that they would

involve quantification over functional relations in primitive notation.

The structuralist proposal is now to construe class-theoretic truths as covert

generalizations over singleton functions; for example, to assert that membership

is well-founded is to assert that whatever singleton function σ may be, the

membership relation2σ defined in terms of it is well-founded.48 One problem at

this point is that the expressive resources required to implement Lewis’ strategy

48 There is nothing special about well-founded set theory. Had we started with a consistent non–
well-founded theory of sets and classes, we would have simply rewritten the axioms for the
singleton operation differently.
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appear to outstrip the plural formulation of classical mereology. As character-

ized earlier, class-theoretic truths require quantification over functions.

Quantification over functions boils down to quantification over functional

relations, but one may be tempted to simulate the latter in terms of plural

quantification over ordered pairs. The problem is that it is not clear how to

interpret talk of proper parts in the official framework of plural classical

mereology.

In collaboration with John Burgess and Allen Hazen, David Lewis explained

how to simulate quantification over binary relations in the framework of plural

quantification and mereology in the appendix to Lewis (1991). One method

requires the existence of an infinitude of atoms, even if reality does not consist

entirely of atoms. If, for simplicity, we assume that it does, we exploit

a consequence of the axiom of choice whereby an infinite domain of atoms A

may be decomposed into three pairwise disjoint subdomains A1, A2, A3 where

each of them is in one-to-one correspondence with the union of the other two.49

The one-to-one maps conceived in terms of plural quantification over two-atom

fusions (or diatoms) make sure that each atom a in A3 has an image a1 in A1 and

one image a2 in A2. Given two atoms a and b in A3, we code 〈a; b〉 as the two-

atom fusion of the images of a and b in A1 and A2, respectively: a1 þ b2. Plural

quantification over such codes achieves the effect of quantification over rela-

tions of atoms. In order to generalize the procedure to cover relations of

nonatomic fusions of atoms, we just note that each fusion of atoms finds an

image in the fusion of A1-images of its atoms and another one in the fusion of

A2-images of its atoms. The order pair of two nonatomic fusions is therefore

coded by the relevant fusion of two images.

The appendix to Lewis (1991) discusses at least one more method to achieve

the effect of quantification over ordered pairs, and yet a third, hybrid method is

used in Lewis (1993). Burgess (2015) has recently observed that all such

methods make crucial use of the axiom of choice and suggested the use of

Hilbert’s � operator as yet a simpler procedure.

Once such a method is in place, Lewis is in a position to recover the axioms of

MK from basic hypotheses to do with the size of reality such as, for example,

that there are no more small fusions of mereological atoms than there are atoms.

So, Lewis explains how to retain the Main Thesis if we opt for a structuralist

account of singletons and trade a philosophically inscrutable singleton operation

for any operation satisfying formal constraints commonly associated with the

singleton operation. One concern at this point is that the appeal to structuralism

seems to undermine the motivation for the Main Thesis. For once we’re prepared

49 This is the method of double images in Lewis (1991), which Lewis attributes to John Burgess.
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to embrace structuralism in order to overcome the mystery of the nonmerelogical

link between objects and their singletons, we may as well use it to overcome the

mystery of membership. Much as the proponent of the Main Thesis construes

singletons as mereological atoms with further nonmereological structure, we

could construe classes more generally as mereological atoms with nonmereolo-

gical structure, which links the members with the class of which they are

members. In other words, we trade the existence of a philosophically inscrutable

relation of membership with the existence of binary relations that satisfy the

formal constraints encoded by the axioms of set theory. But once we do this, we

have no further use for the Main Thesis. There is no pressure to take classes to

have the rich mereological structure the Main Thesis attributes to them; they may

as well be mereological atoms for all we are concerned.

The Making of Singletons Unbound

In contrast to the structuralist approach to singletons, a reductive account may

identify them with mereological atoms for which we have an independent

characterization. The reductive account proceeds to explain the nonmereologi-

cal link between an object and its singleton in terms of some better understood

link between the object and the object with its singleton has been identified. For

examples of such approaches, consider the identification of singletons with

certain states of affairs, or universals, or haecceities, or tropes. Each identifica-

tion results in a different account of the nonmereological link between an object

and its singleton.

Perhaps the best known example of the reductive approach is the proposal

Armstrong (1991) discusses. David Armstrong countenances states of affairs,

which involve the exemplification of properties and relations by individuals.

These states of affairs are mereological atoms, but they are nonmereologically

complex: particulars and properties are constituents of states of affairs, which

are nonetheless mereologically simple. He proceeds to identify singletons with

certain states of affairs of which the members of the singletons are constituents.

In particular, Armstrong takes the object to be a constituent of the state of

affairs, which consists of the object exemplifying unithood. This, in turn, is

a second-order property an object exemplifies just in case it satisfies some unit-

making property under which exactly one object of a certain sort is supposed to

fall. Armstrong offers weighting exactly one kilogram as an example of a unit-

making property since when presented with an instance, we judge that there is

exactly one object of that sort.

The identification of singletons with states of affairs makes singletons less

inscrutable than Lewis takes them to be, but on the other hand, it results in
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a more liberal approach to the making of singletons. For each object a, whether

an individual or a class, is an instance of being a, which is unit-determining. So,

no matter what object a, there should be a state of affairs, which consists of the

object’s exemplification of unithood. Since states of affairs are mereologically

simple, by Armstrong’s lights, this suggests that the singleton operation pro-

vides a total injection of all objects into mereological atoms, which, as Rosen

(1995) observed, clashes with one of our limitative results of the previous

section.

In response to the limitative result, Armstrong (1995) suggests we revisit the

presupposition that unit-determining properties are generally available. Quite

independently of the limitative result, Armstrong observes that the world itself

conceived as the totality of all being appears to form a unit, yet the suggestion

that it has a singleton would entail that the world itself is a mere constituent of

a wider state of affairs. One compromise is to retreat to the weaker claim that it

is merely possible for the totality of all being to form a unit. Thus, for totality of

all being to form a singleton is not for there to be a state of affairs, which

consists of the totality of all being exemplifying unithood. There is no such

thing. Instead, it is enough to acknowledge that the totality of all being could

have been a constituent of a state of affairs which would constitute its singleton.

One may alternatively revisit CEM. This is the option Forrest (2002a)

embraces when confronted with a version of the difficulty for his own reduction

of singletons. He proposes to identify the singleton of an object x not with a state

of affairs but rather with a certain trope the universe exemplifies, namely,

having x as a part. Tropes are properties that are particular to some object;

other objects may possess perfectly similar properties, but they are not identical

to it. For the Main Thesis to remain viable, we must construe tropes as

mereological atoms.

One important difference between this suggestion and the proposal

Armstrong discusses is that the trope in question is not required to have the

universe as a constituent; instead, the trope itself is part of the universe. The

nonmereological relation an object bears to a singleton and suggests the object

is ultimately tracked by a trope exemplified by the universe. The proposal is

close to one David Lewis explicitly considers in Lewis (1991, p. 56, n. 13) on

which singletons are identified with self-identity tropes in the manner of

D. C. Williams.

Whatever tropes we choose to play the role of singletons, we now have a total

map from objects into mereological atoms, which, given Proposition 3.2, is

inconsistent with CEM.50 Forrest (2002a) suggests we appeal to the priority of

50 On minimal assumptions such as the existence of at least two objects.
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objects to the tropes they exemplify in order to motivate a restriction of the

axiom of fusion. One rationale for this is that the identity conditions for tropes

are specified in terms of the very objects that instantiate them. No sense is to be

made of the trope without a prior specification of their instances. That appears to

justify, for example, the absence of a fusion C of all classes, since such a fusion

C would include every singleton as a part, including its own singleton Cgf . But

if Cgf is part ofC, then it would have to be prior to the trope being identical with

C, which would make Cgf prior to itself. Better to restrict the axiom of fusion in

order to accommodate the fact that an object is prior to its singleton.

One may suggest that mereological composition occurs in stages of a certain

cumulative hierarchy. There is first a level of individuals without immediate

parts and their singletons. At the next level, we find fusions of individuals and/

or singletons found at the earlier level, and so on. For a more compact formula-

tion of the thesis, fusions of singletons are formed in levels. Given some

individuals without parts and/or fusions found at some level, there is a fusion

of them.51 Part of the motivation for the strategy at hand is the hypothesis that

the sole member of a given singleton is prior to the singleton, but there are

alternative moves available even for theorists for whom singletons and their

members are on a par.

Different characterizations of CEM suggest different strategies to avoid para-

dox. Cotnoir and Varzi (2021) present CEM as Core Mereology + Remainder +

Join, and one may be tempted to weaken remainder to strong supplementation in

order to defuse the limitative constraint set in Proposition 3.2. The suggestion, to

be more precise, is to retreat from Classical Extensional Mereology to

Extensional Mereology (EM) + Join.52 Figure 1 illustrates the fact that the system

that results is strictly weaker than CEM, since it depicts a model of EM+ Join that

is not a model of CEM.

Each arrow in Figure 1 represents the relation a proper part bears to an object,

but the diagram leaves implicit the fact that every object is a part of itself.

Remainder fails in the model because nothing in the model is a fusion of parts

of d that fail to overlap a. This is precisely the feature one may hope to use in

order to avoid paradox. For there is no reason to expect a join of atoms to have

a unique decomposition into atoms; d, for example, is both the join of atoms a

and b and that of b and c.

Consider now the case of the non–self-membered classes. There are non–

self-membered classes, and they each come with a singleton. The singletons of

51 This is in line with the proposal Caplan, Tillman, and Reeder (2010) outline, except for the fact
that they are concerned with a different mereological operation.

52 Recall that Extensional Mereology (EM) is Core Mereology + Strong Supplementation.
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the non–self-membered classes have a join, R, but R is not a fusion of them, on

pain of contradiction. For R has a singleton, Rgf , which is part of R on pain of

contradiction. (Otherwise, R =2R, and Rgf would have to be a part of R.) But Rgf
is not an atom of a non–self-membered class; the join of singletons of non–self-

membered classes, R, includes a part distinct from them. So, R is a class of all,

but not only, non–self-membered classes: R contains at least one self-membered

class, namely, R itself, on pain of contradiction.53

There are very simple models of the framework in which the making of

singletons remains unbounded.54 The question, of course, is whether it is more

generally able to support a rich and varied domain of classes. The answer is

mixed. On the one hand, nothing prevents the construction of more elaborate

models in which a vast array of individuals are asked to play the role of proper

classes. On the other hand, there are serious limits as to how much comprehen-

sion the models can accommodate. In particular, the axiom of join is inconsist-

ent with simple instances of predicative class comprehension formulated in

a b

d

c

Figure 1 A model of EM + Join

53 Or consider Mirimanoff’s paradox, which arises when we consider the join of the well-founded
classes. There are well-founded classes, and they each come with a singleton. The singletons of
well-founded classes have a join, W, which is not their fusion on pain of contradiction. For
otherwise, W itself would be well-founded, in which case its singleton, Wgf , would have to be
one of its parts. That would makeW self-membered and non–well-founded. So,W is not a fusion
of singletons of well-founded classes, which means that it overlaps some singleton of some
non–well-founded class.

54 Given an individual Ω, we may start with a model of ZFCU of the form

〈Vκð Ωgf Þ;2; S〉;
where κ is a strong inaccessible κ and S ¼ Vκ Ωgf Þ\ Ωgfð . We will define a relation of part on
Vκð Ωgf . First, we identify the set of atomic classes of the model, A ¼ xg : x2Vκ Ωgf Þð gff , and
the joins of sets of atomic classes in the model, J ¼ Vκ Ωgf Þ\ ∅ gfð . We now define the operation
γ : P<κ Að Þ\ ∅ g→Jf :

γ Xð Þ ¼ ∪ 
X if jX j < κ

Ω if jX j ¼ κ
:

�

We now define a relation that specifies the atomic classes that are parts of a given member of the
domain, x ≤ �y :¼ ∃ Y⊆Aðy ¼ γ Yð Þ∧ x2YÞ. This enables us to define a relation of part to whole
in the model: x ≤ y : ðy2 J ∧ 8z z ≤ �x→z ≤ �yð ÞÞ∨ y ¼ ∅ ∧ x ¼ yð Þ. We now define membership
in the model: x � y :¼ xg ≤ yf , and Sx :¼ ∃ y y � x∨x ¼ ∅ . Notice that � extends the member
relation in the model 2. One reason the model is trivial is that there is a single proper class in the
model, Ω, which is the join of both the set of non–self-membered classes, all classes, all von
Neumann ordinals, etc.
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a typed two-sorted language in which we bar atomic formulas of the form X 2 y

and X 2 Y :

∃X8xðx2X ↔’ xð ÞÞ;
where ’ xð Þ contains no bound class variables. Given Join, we abandon

instances of predicative comprehension of the form:

∃X8x x2X ↔ x 6¼ yð Þ;
where y is a free set variable.55 That means that some sets must fail to form

a class in the presence of Join.

Proper Classes

What animates Lewis (1991) and Lewis (1993) is the ambition to explain what

is for something to be a member in terms of singleton and part. There is,

however, a very different motivation one may provide in support of the Main

Thesis. Set theory presupposes a distinction between sets and classes, but there

are at least two different attitudes one may take with respect to that distinction.

We’ve thus far remained neutral with respect to whether nonempty sets are

special cases of classes or whether the distinction corresponds to two funda-

mentally different types of collection. This is the distinction Burgess (2004)

draws between lumpers and splitters. Lewis (1991) and Lewis (1993) take the

view of a lumper for whom there is a broad category of collection under which

classes fall, and nonempty sets are just some of them. Sets are, for the lumper,

classes that are, in fact, members, whereas proper classes are never members.

Splitters, on the other hand, deny that every nonempty set is, in fact, a class.

For each nonempty set, there is a coextensive class, one whose members are

exactly the elements of the set. But there is no reason to take coextensiveness to

be sufficient for identity. If, as suggested in Uzquiano (2003) and Boolos

(1984), to speak of a class is just to speak of the members in the plural, then

the plurality of elements of the set is coextensive with the set. But to the extent

to which the set is one while the class may be many, it is not open to one to

identify them. Set theory is concerned with the element–set relation, which is

governed by the axioms of ZFC. Classes, on the other hand, are fundamentally

55 Consider the condition:

∃ y x ¼ ygf g∧ ygf g≰ yf Þ:fð
Let R ¼ ∨∃ y x ¼ ygf g∧ ygf g≰ yf Þfð . On the one hand, Rgf g ≤Rf . (This is because Rgf g≰Rf
only if Rgf g≤Rf .) On the other hand, suppose 8x x � X↔x 6¼ Rgf Þð . If xgf g≰ xf , then x 6¼ R,
xg 6¼ Rgff . So, xg2 Xf and xgf g ≤Xf . Since R is a join of all such sets, R ≤X and thus
Rgf g ≤R ≤Xf , which means Rgf g ≤Xf and Rg2 Xf , which means Rg 6¼ Rgff .

Contradiction. Thanks to Sam Roberts here.
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different from sets, and the theory of classes studies the interaction between the

element–set relation and the relation a member bears to a class. Unlike sets,

classes are never members and they satisfy comprehension principles that posit

the existence of a class of all and only sets satisfying a certain condition.56

Others may insist on an interpretation of classes on which they are objects with

members but they are never sets.57 The issue for such theorists is to explain the

mysterious distinction they draw between what look like two fundamentally

different sorts of collection: sets and classes.

When pressed to explain the distinction between sets and classes, one may

initially be tempted to take a step back andmake do without proper classes. That

would allow one to vindicate the thought that as Boolos (1984) puts it, ZFC is

the most comprehensive theory of collections. The problem is that proper

classes have earned their keep in set theory. On the one hand, they provide the

means to reformulate the axiom schemas of separation and replacement as

single axioms, which enables one to produce a finite axiomatization of set

theory. On the other hand, they have played a role in the motivation of large

cardinal axioms.58

There is prima facie reason to take talk of proper classes at face value, and the

problem of proper classes becomes the challenge to provide an account of the

distinction between sets and classes on which following Maddy (1983), proper

classes are sufficiently different from sets, but they nevertheless remain as real

and well-defined as sets. Extant accounts of proper classes often deliver on one

constraint at the expense of the other. Maddy (1983) explains how the likes of

von Neumann, Morse, Kelley, and Reinhardt strive to make classes real, well-

defined entities, but their classes look suspiciously similar to sets. Others

understand talk of classes in terms of satisfaction of open formulas of the

language of set theory relative to appropriate set parameters or even in terms

of plural quantification over sets. These accounts make classes significantly

different from sets, but they dispense with classes conceived as objects in the

range of our first-order variables.

This is fertile ground for a mereological interpretation of classes with the

Main Thesis as a centerpiece. One option that emerges is to identify classes with

mereological sums of sets against the background of the Main Thesis. There is

a distinction to be made between, for example, the unordered pair a; bgf and the

56 NBG restricts attention to conditions whose variables range exclusively over sets, whereas MK
allows for impredicative conditions that quantify over classes in addition to sets.

57 Horsten and Welch (2016) want classes to be objects in order to make sense of reflection
principles whereby the set-theoretic universe is compared with certain proper initial segments
thereof.

58 See, for example, Uzquiano (2003) and Horsten and Welch (2016).
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mereological sum ag þ bgff , which, on the view at hand, is not a set, but rather

a class. Its parts, however, are its subclasses, namely, agf and bgf . Singleton

sets provide the atomic constituents for classes, which have them as parts.

Singleton classes are in fact sets, but not all improper classes are: complex

mereological sums of singletons have sets as proper atomic parts but they may

have further proper parts as well.

This is the general approach to the problem of proper classes Horsten and

Welch (2016) and Horsten (2016) have recently articulated. One important

difference with respect to Lewis (1991) and Lewis (1993) is that they do not

share Lewis’ ambition to explain the element–set relation in terms of a more

fundamental relation. Instead, they take sets as given and the element–set

relation as antecedently understood, and they seek to understand the relation

a member bears to a class in terms of the element–set relation: to be a member

of a class is nothing other than to be an element of an atomic part of a class,

namely, a singleton set.

The mereological interpretation of proper classes vindicates the thought that

ZFC is the most comprehensive theory of collections, where collections are

conceived as sets formed at stages of a cumulative hierarchy. The set-theoretic

universe is the mereological sum of all singletons, and, unlike sets, it is not

formed at a stage of the cumulative hierarchy. Other parts of the set-theoretic

universe correspond to other proper classes. Classes, for them, are parts of the

set-theoretic universe, and for a class to be part of another is just for the former

to be a subclass of the latter. Against the background of CEM, their account

vindicates an impredicative form of class comprehension, which delivers a rich

and varied domain of classes that supports their applications in set theory.

The account of proper classes as mereological sums of singletons appears to

deliver on two constraints Maddy (1983) identified for a satisfactory solution to

the problem of proper classes. On the one hand, mereological sums are real

well-defined objects; indeed, they lie in the range of our first-order variables and

they fall within the subject matter of mereology. And, on the other, mereological

sums are significantly different from sets. To the extent to which the operation

of mereological composition seems structurally different from that of set

formation, there may be some reason to expect their outputs to be different.59

Horsten and Welch (2016) and Horsten (2016) take for granted that proper

classes are never elements; there is, for example, no opportunity to form

a singleton of the class of all sets. On their view, unlike sets, classes are not

mathematical objects, and as parts of the mathematical universe, they

59 To illustrate the structural differences between the two operations, notice that the mereological
sum of some sums of parts, for example, is nothing over and above the sum of the given parts.
Yet, the set of sets of some members is a new set, one which contains each of the sets in question.
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themselves are never available for set formation at any stage of the cumulative

hierarchy.

There is, however, room for an alternative conception of proper classes. If

proper classes are indeed well-defined objects, which are not sets, they appear to

qualify as urelements. The elements of their singleton parts aremembers of each

class, but being a member of a class is different from being an element of a set.

Now, to the extent to which proper classes may be conceived as urelements, they

should be available for set formation at the very first stage of the cumulative

hierarchy: we should be able to form a singleton of the class of all classes as well

as further sets of classes.

One consequence of this view is that there is no longer reason to think that

there should be a set of urelements.60 There is, however, no decisive obstacle

for the development of impure set theory with a proper class of urelements.

Indeed, Zermelo himself appears to make allowance for a failure of the

urelements to form a set in Zermelo (1930). Nor is it clear that the iterative

conception of set requires a set of urelements at the very first state of the

cumulative hierarchy.61

More serious is the clash with the limitative constraint discussed in connec-

tion to Proposition 3.2. Once we make allowance for proper classes to play the

role of urelements available for collection into further sets, we turn the singleton

operation into a total injective map from the domain of all objects into the range

of mereological atoms. That, we know, is inconsistent with CEM, which means

that we are under pressure to weaken the mereological framework again. Our

discussion of the main responses available to reductionist accounts of the

singleton operation carry over to this case.

5 Hierarchical Composition

We now shift focus on the hypothesis that classes exhibit a hierarchical mereo-

logical structure: they are composed of their members, some of which may

themselves be composed of further members. One version of the hypothesis

identifies the proper parts of a given class with its members, the members of its

members, etc. If there are individuals in the transitive closure of a class, then

their proper parts are similarly proper parts of the class. Unless a subclass is

itself a member of the given class, then it is not counted as a part of the class.

There is, however, a more liberal formulation of the hypothesis that includes the

60 Barwise andMoss (1996), McGee (1997), andMenzel (2014) discuss the axiom that there is a set
of urelements along with some applications.

61 See Uzquiano (2015b) for some discussion of this point.
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subclasses of the given class as some of its parts. Classes are composed of

members, but they are likewise composed of their subclasses.

We look at two implementations of the proposal set against different mereo-

logical frameworks. One of them, which is due to Forrest (2002b), construes the

relation of part as basic and attempts tomimic member in terms of the relation of

maximal proper part against the background of Heyting mereology. This

approach to immediate part enables one to define a surrogate for the member

relation, which Forrest (2002b) calls a pseudomember relation. Despite some

limitations, there is one important respect in which the theory of pseudoclasses

provides a framework within which to recover much of set theory – provided at

least that the domain of individuals is sufficiently rich and varied. While Forrest

(2002b) takes the more liberal perspective on Hierarchical Composition, it is

not difficult to modify the account in order to accommodate the strict formula-

tion of Hierarchical Composition.

The other option is to ignore the qualm that immediate part is not a transitive

relation and nonetheless adopt that relation as a basic mereological primitive.

The mereological background for this proposal is an axiomatization of hier-

archical mereology in terms of immediate part. Caplan, Tillman, and Reeder

(2010) proceed to identify a class with a rigid embodiment of its members as

they exemplify some attribute or another.62 Singletons are special cases of

classes; for them, the singleton agf is a rigid embodiment of the object a as it

exemplifies some attribute or another.63 While the proposal is consistent with

the strict formulation of Hierarchical Composition, it is not difficult to adapt the

account in order to accommodate more liberal formulations of the hypothesis on

which subclasses are indeed counted as parts of a given class.

A Theory of Pseudoclasses

We introduced Heyting mereology as a candidate axiomatization of part for

a proponent of the hierarchical perspective on composition.

One of the distinctive features of Heyting mereology is that an object may be

more than the join of its proper parts, for example, agf is, on the face of it,more

than a, which is the join of the proper parts of agf . Once we relinquish weak

supplementation, we must draw a distinction between simplicity understood as

62 Caplan, Tillman, and Reeder (2010) coin the term ‘Fine part’ to refer to what we have called
immediate part, and they explicitly address the question of whether its nontransitivity is a reason
to think it is not a relation of part to whole.

63 In this case, the material part of the singleton would be a, and its formal part would be the
principle of embodiment. If, following Caplan, Tillman, and Reeder (2010), you identify the
empty set with the latter, you will have a view on which singletons are rigid embodiments
composed of their sole member and the empty set conceived as an attribute, one which provides
the principle of embodiment whereby the singleton is generated from a given object.
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the lack of proper parts and atomicity construed as the lack of a decomposition

into proper parts. For there are now at least two different reasons for an object to

lack such a decomposition. A simple is, of course, not a join or proper parts, but

neither is an object with a single maximal proper part, for example, agf . To the

extent to which agf lacks a decomposition into proper parts, we may conceive

of it as a mereological atom even if it is not a simple. If there are classes, then

singletons are nonsimple atoms. The singleton of a, agf , is no longer simple

because it has a as a proper part, indeed, a maximal proper part.

The other important feature of the framework is that part is construed as basic

and other mereological relations are to explained in terms of part. The crucial

question now is how to characterize the relation of immediate part in terms of

part. One proposal we mentioned at the outset is to make do with the relation of

maximal proper part:

x⊲ y :¼ x < y∧: ∃ z x < z∧ z < yð Þ:
(Simons 1987)(108) and Cotnoir and Varzi (2021, sec. 3.3.2) discuss the

proposal in detail.64 Given Hierarchical Composition, each of two members a

and b would be maximal proper parts of the class a; bgf : they each would be

proper parts of a; bgf , and none of them would be proper parts of further proper

parts of a; bgf . But whatever its merits, that would still not be the relation of

immediate part at play in the hypothesis that classes exhibit a hierarchical

mereological structure. For as Fine (1992) observes, we would like to count a

as an immediate part of a; agf gf even after we acknowledge that it is not

a maximal proper part of that class. Given Hierarchical Composition, a is

a proper part of agf , which is, in turn, a proper part of a; agf gf . Therefore, a

is not a maximal proper part of a; agf gf .

Matters are similar for Liberal Hierarchical Composition on which sub-

classes are counted as parts of a given class. Once we let subclasses such as

agf and bgf be parts of the class a; bgf , we are forced to acknowledge that a is

not even a maximal proper part of a; bgf . For on the liberal formulation of the

hypothesis, a is a proper part of agf , which is itself counted as a proper part of

a; bgf . So, maximal proper part is not quite what we want if we want to mimic

the relation a member bears to a class. One temporary fix may be to focus on

a similar relation:

x⊴ y :¼ ∃ z x⊲ z∧ z ≤ yð Þ:
Here z ≤ y abbreviates z < y∨ z ¼ y. Neither a nor b would be maximal proper

parts of the class a; bgf , but they each qualify as a maximal proper part of some

64 Goodman (2022) entertains a similar proposal except for the further stipulation that y is not
matter.
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part of a; bgf , namely, agf and bgf , respectively. But we face a similar diffi-

culty. For notice that we now have that a⊴ agf gf , since a is a maximal proper

part of some part of agf gf , namely, agf . Unfortunately, we do not want to count

a as an immediate part of agf gf even after we acknowledge that it is a maximal

proper part of some part of that class.

One approach at this point is to persevere and seek to find a more appropri-

ate surrogate for the member relation defined in terms of part. This is the

strategy Forrest (2002b) pursues when he defines a pseudomember relation in

terms of ⊴ :

xEy:¼ x⊴ y∧: ∃ z x⊴ z∧ z⊴ yð Þ:
That is, x is a pseudomember of y if x is a maximal part of some part of y, but x is

not a maximal part of any part of y that is itself a maximal part of some part of y.

While, much like before, a⊴ agf gf , we are now in a position to rule a out as

a pseudomember of agf gf since a⊴ agf and ag⊴ agf gff .

In line with Forrest (2002b), define a pseudoset as something with pseudo-

members, which is itself a pseudomember of something; and a pseudoclass is

something with pseudomembers, which is itself not a pseudomember. This is of

course perfectly parallel to von Neumann’s distinction between sets and classes,

except for the fact that we now have reasons of principle to expect some

pseudoclasses to never be pseudomembers. For suppose that U contains all

pseudosets as pseudomembers; then U should be a pseudoclass: for otherwise,

ifU has a pseudosingleton u, thenU E u andU ⊴ u.65 On the other hand, if v is

a pseudosingleton of u, then u⊴ v and v⊴U , which would contradict the fact

that uEU since, by hypothesis, U contains all peudosets as pseudomembers.

The project now is to lay down a theory of pseudoclasses and to investigate

the extent to which they provide surrogates for classes and serve as a foundation

for vast parts of mathematics. It turns out that provided a rich supply of

individuals, the theory of pseudoclasses will have the means to interpret pure

set theory, and will therefore serve a variety of foundational purposes.

There are at least two prima facie obstacles facing the formulation of a theory

of pseudoclasses, but none of them turn out to be decisive. One problem is that

unlike 2, the newly introduced pseudomember relation � is not extensional. If

there are classes, then it is not difficult to verify that agf gf and a; agf gf share

exactly the same pseudomembers, that is, agf . For a⊴ agf and we have each

ag⊴ agf gff and ag⊴ a; agf gff .66 The nonextensional character of the pseu-

domember relation makes it difficult to speak of the pseudosingleton of a given

65 To be a singleton of U is to have U as the sole pseudomember.
66 The latter is just because ag⊲ agf gff and agf g ≤ a; agf gff .
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individual a, as there may be more than one pseudoset with a as its sole

pseudomember.

We may rephrase the problem differently. Let us introduce pseudoclass

abstracts of the form

½x : ’ xð Þ�
in the hope that they might refer to pseudoclasses x, whose pseudomembers are

exactly the objects that satisfy the relevant condition ’ xð Þ. That is,
8y yE½x : ’ xð Þð �↔’ yð ÞÞ:

Let us stipulate, as usual, that ½a� is a pseudoclass whose only pseudomember is

a, ½a; ½b�� is a pseudoclass whose pseudomembers are exactly a and the pseu-

doclass ½b�, and so on. One issue is that the fact that � is not extensional

undermines the presumption that there is at most one candidate referent for

each pseudoclass abstract ½a�. This is not an insurmountable obstacle according

to Forrest (2002b). One option is to regard the reference of pseudoclass

abstracts as referentially indeterminate: there is an oversupply of referents,

which may be accommodated through the use of supervaluations. Even if

pseudoclass abstracts are referentially indeterminate, the class-theoretic state-

ments in which they appear may nevertheless receive a determinate truth value,

since they are not sensitive to class-theoretic irrelevant differences between the

candidate referents for each pseudoclass abstract.

There is another alternative, which is simply to make an arbitrary choice in

each case. Hilbert’s �-symbol seems tailor-made for this purpose. As Burgess

(2015) notes, one common pattern in mathematics after one satisfies oneself of

the existence of at least one witness to a given condition ’ xð Þ is to introduce

a term τ to refer to such an object. The Hilbert �-symbol codifies this procedure

formally through the introduction of a singular term �x’ xð Þ under certain

conditions to denote one instance of the condition.67 We could take the symbol

to be governed by the principles:

∃ x’ xð Þ→’ð�x:’ xð ÞÞ
8xð’ xð Þ↔ψ xð ÞÞ→ �x:’ xð Þ ¼ �x:ψ xð Þ:

So, if something satisfies the formula 8yðyEx↔’ yð ÞÞ, we could let

�x8yðyEx↔’ yð ÞÞ denote one such object. We may in such cases construe the

pseudoclass abstract as a suitable Hilbert term:

½x : ’ xð Þ� :¼ �x8yðyEx↔’ yð ÞÞ:

67 Burgess (2015) makes the proposal in the context of Lewis’ proposed reduction of the theory of
classes to classical mereology and the theory of singletons.

56 The Philosophy of Mathematics

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
09

22
41

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009092241


If the nonextensional character of E is a threat to uniqueness, there is an even

more serious threat to existence. For there is no a priori guarantee for the

existence of a witness to the generalization:

8yðyEx↔’ yð ÞÞ:
Indeed, as Forrest (2002b) points out, the existence of such a witness is

sometimes refutable. Given an individual a and a pseudoclass ½a; b�, there is

nothing to satisfy the formula:

8y yEx↔ y ¼ a∨y ¼ ½a; bð �Þ:
For such a pseudoclass ½a; ½a; b��, if it existed, would contain a and ½a; b� as
pseudomembers: aE½a; ½a; b�� and ½a; b�E½a; ½a; b��. That would mean that

a⊴ ½a; ½a; b�� and ½a; b�⊴ ½a; ½a; b��, which, by definition, rules a out as

a pseudomember of the class: :aE½a; ½a; b��. We conclude that ½a; ½a; b�� fails
to denote a pseudoclass on pain of contradiction.

This raises the question of whether the domain of pseudoclasses is suffi-

ciently rich and varied to be of mathematical interest and to sustain a measure of

set theory and mathematics. Remarkably, Forrest (2002b) observes that the

framework has the resources to provide pseudosets for a rich variety of well-

founded sets, which he calls simply well-founded sets. Given a set a; b; cgf gf ,

we may use a directed graph to represent the relation of member on the

transitive closure of a; b; cgf gf . Each edge represents the converse of the

member relation: an arrow from a node m to a node n represents the fact that

the set n represents a member of the setm represents. Wewill in that case refer to

n as a child of m. The top node of the graph corresponds to the set we want to

represent, and the other nodes in the graph correspond to sets in the transitive

closure of the initial set. A path is a sequence of nodes where each node is

a child of its predecessor. The graph in question will be a tree if no two nodes are

connected by more than one path. For a visual representation, compare the

graph for the set a; b; cgf gf , namely, Figure 2, which is indeed a tree, with the

graph for the set a; a; bgf gf , namely, Figure 3, which is not:

{a, {b,c}}

{b,c}a

b c

Figure 2 A graph for a; b; cgf gf .
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The arrows in each of the preceding graphs represent the membership relation on

the transitive closure of each set. The graph for a; b; cgf gf is a tree because no

two nodes are connected by more than one path. On the other hand, the graph for

a; a; bgf gf is not a tree because there is more than one path from a to a; a; bgf gf :

one connects a directly to a; a; bgf gf , whereas the other proceeds indirectly via

a; bgf . Nor is there a tree corresponding to the restriction of the member relation

to the transitive closure of b; cg; c; dgf gff as represented in Figure 4.

The reason this time is that there is more than one path connecting c to

b; cg; c; dgf gff : one via b; cgf and the other via c; dgf .

Forrest’s simply well-founded sets are those for which the graph corresponding

to the restriction of the member relation to their transitive closure forms a tree. One

crucial observation at this point is that the framework provides a pseudoset for each

simply well-founded set, whose parts form a model of Heyting mereology.

To be sure, pure sets are generally not simply well-founded, for example,

∅ ; ∅ gf gf whose graph is given in Figure 5. But given a sufficiently rich and

varied domain of individuals, we may make do with simply well-founded

impure sets. For we may, if we like, map each pure set into a simply well-

founded impure set when we let different individuals play the role of ∅ in

different nodes of the graph for the pure set. So, given two individuals a and b,

the role of ∅ ; ∅ gf gf could be played by the simply well-founded impure set

a; bgf gf , whose graph is given in Figure 6.

{a, {a,b}}

{a,b}

b

a

Figure 3 A graph for a; a; bgf gf .

{{b,c}, {c,d }}

{b,c}

b c d

{c,d }

Figure 4 A graph for b; cg; c; dgf gff .
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Since a von Neumann ordinal contains all of its predecessors as members,

von Neumann ordinals are not simply well-founded. But given a countable

number of individuals, we have a simply well-founded impure set to play the

role of ω, where each occurrence of ω in the graph is replaced with a different

individual. It is not difficult to check that we will require an inaccessible domain

of individuals in order to be able to count on simply well-founded impure

surrogates for all the ordinals less than the first inaccessible, whose existence

is guaranteed by the axioms of ZFC.

Rigid Embodiments

One motivation for the theory of pseudoclasses is the ability to make do with

a basic relation of part without further nonmereological primitives. The relation

of pseudomember is defined in terms of part alone, and unlike the approach

discussed in the previous section, there is no use for a primitive singleton

function. But the price is high, since however fruitful, the relation of pseudo-

member is at most an inadequate surrogate for the more basic relation of

member. This is the point of the departure for the next proposal.

What we learn when we attempt to characterize the relation of immediate part

in terms of maximal proper part is that the former is not adequately captured

against the background of Heyting mereology where part is construed as the

basic mereological relation. The fact that an individual a is not a maximal

proper part of the class a; agf gf reveals that not all immediate parts are maximal

proper parts, and the fact that a; agf gf and agf gf share the same maximal

{a, {b}}

{b}a

b

Figure 6 A graph for a; bgf gf

Figure 5 A graph for ∅ ; ∅ gf gf
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proper parts suggests that immediate part is not to be defined in terms of part

alone.

One option at this juncture is to shift from the relation of part to that of

immediate part as the basic mereological relation and to formulate an axioma-

tization of hierarchical mereology in terms of the latter. We explained how to do

that in Section 3, and we are now in a position to develop the theory of classes

against that background. The mereological framework is a variation of the

system Fine (1999) formulated in terms of immediate part in line with Jacinto

and Cotnoir (2019). Hierarchical mereology codifies the hierarchical concep-

tion of composition on which objects submit to a hierarchical decomposition

into immediate parts, each of which may have further immediate parts. Each

complex object consists of some immediate parts unified by a certain form,

which some theorists call a “principle of unity,” for example, Johnston (2006),

and others identify with a relation or an attribute, for example, Fine (1999).

Classes are a special instance of this phenomenon. They submit to a hierarchical

decomposition into members, which are their immediate parts, some of which

may have further members as immediate parts. What unifies the immediate

parts of a class, however, is the existence of its members, which Johnston (2006)

understands as a multigrade relation which applies to some objects if, and only

if, they all exist. Caplan, Tillman, and Reeder (2010) propose to understand the

unity of a class in terms of the satisfaction of some attribute or another. However

one conceives of a class, the relation of member may now be characterized as

a special instance of the relation of immediate part when restricted to the domain

of classes.

We now operate in the plural formulation of hierarchical mereology formu-

lated at the end of Section 3. Let E be the plural attribute some objects xx

exemplify if, and only if, they all exist. Given a modal operator □ for meta-

physical necessity, at the very least, we assume

□ ðExx↔8x x≺ xx→ ∃ y x ¼ yð ÞÞ:
Given some objects xx, the rigid embodiment they compose as they exist,

xx=E, shares its immediate constituents with a variety of other rigid embodi-

ments, for example, the rigid embodiment they compose as they exemplify

a certain spatial arrangement, xx=S. But one key difference between them is

that their existence conditions are linked to the existence conditions of the

given objects regardless of what other attributes they may exemplify. In this

respect, xx=E is a better candidate to play the role of a; bgf than xx=S when S is

a spatial attribute the objects may exemplify at one time/world but not at

another.
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We now define a class as a rigid embodiment of some objects xx=E as they

exist, and we define the relation a member bears to a class in terms of immediate

part. In other words:

CX :¼ ∃ xx X ¼ xx=E
x2 Y :¼ x≪ Y ∧CY :

The relation of member inherits the irreflexivity, asymmetry, and antitransitivity

of immediate part. On the other hand, one important difference between mem-

ber and immediate part is that unlike the latter, the former is extensional:

8x x2X ↔ x2Yð Þ→X ¼ Y :

This follows from the definition of class in combination with plural identity

postulate (PR3):

∃ x x ¼ xx=X→ xx=X ¼ yy=Y ↔ xx ≈ yy∧X ¼ Yð Þ:
When we restrict attention to classes, we obtain:

∃ x x ¼ xx=E→ xx=E ¼ yy=E↔ xx ≈ yyð Þ;
which means that two classes are identical if they share the same immediate

parts, which means that they are coextensive.

While we are broadly on the path Caplan, Tillman, and Reeder (2010) laid

when they set out to identify classes with certain rigid embodiments, there are

some differences as well. One difference concerns the principle of unity of

classes, which, for them, is a higher-order multigrade attribute exemplifying

some attribute or another. This is, as they conceive of it, an attribute some

objects exemplify just in case they exemplify some attribute or relation, and,

much like E, it is one the objects in question will exemplify whenever they exist.

The other important difference is that their preferred axiomatization of hier-

archical mereology explicitly includes the attribute that unifies a rigid embodi-

ment as one of its immediate parts, indeed much like Fine (1999), they make

a distinction between the material immediate parts of a rigid embodiment and

the formal immediate part that unifies them.68 That means that they regard the

attribute E as one of the immediate parts of a class, and they exploit this

observation to provide their own original account of the empty set, ∅ , which

they identify with an attribute. The empty set is thus an immediate, albeit

a formal, part of all classes, indeed part of all singletons.

The outlook that emerges is in line with Hierarchical Composition, since to

be a proper part of a given class is to be an ancestral immediate part of the class.

68 Their formulation of iterative composition in Caplan, Tillman, and Reeder (2010, p. 513) makes
the commitment explicit.
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That includes the members of the class, the members of its members, the

members of the members of its members, and so on. And it includes the

immediate parts of individuals that are parts of the class. That means that not

all subclasses are counted as parts: agf is a subclass of a; bgf , but it is certainly

not one of its immediate parts. One may be tempted to point out that each

immediate material part of agf is an immediate material part of a; bgf , but

absent some principle of supplementation, that observation would not, by itself,

help us establish that one is part of the other. In that respect, the proposal agrees

with Caplan, Tillman, and Reeder (2010), which is consistent with Hierachical

Composition.

One question at this point is whether one may adopt some variation on the

present proposal in order to vindicate Liberal Hierachical Composition, which

regards the subclasses of a given class as some of its parts. We may find

inspiration in (Fine 1999), who considers but does not officially adopt

a criterion for part in terms of states of affairs:

a; b; c; . . . =R is part of a0; b0; c0; . . . =R0 if the state of a; b; c; . . . standing in the
relation R is part of the state of a0; b0; c0 . . . standing in the relation R0.69

This suggests a plural counterpart:

xx=F ¼ yy=G if part of what is for yy to be G is for xx to be F.

But what exactly is for some objects xx to be F to be part of what is for some

objects yy to beG? At the very least, necessarily, if yy areG, then xx are F, which

would in turn invite a modal formulation of the principle:

□ Gyy→Fxxð Þ→ xx=F ≤ yy=G:

When restricted to classes, the principle collapses into:

□ Eyy→Exxð Þ→ xx=E ≤ yy=E:

But this, in turn, suggests that subclasses are themselves parts of classes:

xx≼ yy→ □ Eyy→Exxð Þ
□ Eyy→Exxð Þ→ xx=E→ yy=E:

That is, part of what is for a; b; c to exemplify E is for a; b to itself exemplify E.

(Had a; b not existed, one of themwould have not existed and a; b; cwould have

not existed either.) That would help secure the claim that a; bgf is part of

a; b; cgf , despite the fact that the former is neither an immediate part nor an

ancestral immediate part of the latter. On the view that emerges, a class is

69 See Fine (1999, p. 66).

62 The Philosophy of Mathematics

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
09

22
41

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009092241


a proper part of another if the former is either an ancestral immediate part

or a subclass of the latter, which is in line with Liberal Hierarchical

Composition.

One limitative constraint on hierarchical mereology is that we should restrict

the existence postulate for rigid postulates on pain of contradiction.70 One way

to do this is make sure that rigid embodiments are composed in stages of

a certain cumulative hierarchy. There is a first stage at which we find individuals

without proper parts. At successor stages αþ 1, we form rigid embodiments

composed of immediate parts found at stage α as they exemplify a plural

attribute. At limit stages λ, we form rigid embodiments composed of immediate

parts found at earlier stages β < λ as they exemplify a plural attribute.71 When

we restrict attention to classes, we realize that they are no exception to the rule:

classes are formed in stages. We begin with a domain of individuals without

parts. At successor stages, we form classes of objects drawn from the earlier

stage. Finally, at limit stages, we form classes of objects drawn from earlier

stages in the hierarchy.

One apparent advantage of the proposal is that it provides independent

motivation for the iterative conception of set as an instance of a broader

phenomenon, one which is separate from the threat set-theoretic antinomies

pose to the principle of naive comprehension for set theory. Some may remain

skeptical on the grounds that we had to modify the plural formulation of the

existence postulate for rigid embodiments under duress: Proposition 3.3 tells us

that the original postulate came into conflict with the plural formulation of

Cantor’s theorem. Indeed, one might have sought to weaken the axioms of

plural quantification instead. That is precisely what Florio and Linnebo (2021)

do when they advocate for a restriction of Plural Comprehension in order to

accommodate Plural Collapse, which is just the thesis that no matter what some

objects may be, they form a set.

But Fine (2010) offers in effect a separate rationale for the outlook. He

characterizes an object as prior to another if the former appears in the explan-

ation of the identity conditions of the latter. That is, in order to explain what the

latter is, one must mention the former. The thought now is that the immediate

parts of a rigid embodiment are prior to the embodiment. In order to explain

what the rigid embodiment is, there is no choice but to mention its immediate

parts and the attribute which unifies them. This relation of priority is, in fact,

what underlies the formation of rigid embodiments in stages of a cumulative

70 This is Proposition 3.3 according to which the plural formulation of the existence and identity
postulates for rigid embodiments are inconsistent with the existence of more than one object.

71 See Jacinto and Cotnoir (2019) for a construction of models for the iterative conception of
embodiment.
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hierarchy: no sense is to be made, for example, of a rigid embodiment of all

embodiments as they exemplify some attribute. For that embodiment would

have be involved in the explanation of what that object is: the embodiment

would itself be one of the embodiments the attribute is supposed to unify. But

that would not, of course, be a genuine explanation. Thus, the rationale for the

postulate of iterative existence is the general thought that the immediate parts of

a rigid embodiment are prior to them, and thus they are generated in stages.

One more consequence of the proposal is that all classes are improper: there

are no proper classes. Instead, since all classes are formed at some level of the

cumulative hierarchy, they behave like sets. They submit in fact to the axioms of

ZF, which with the exception of extensionality, translate into constraints on the

width and height of the cumulative hierarchy. This is, in fact, the import of the

appendix of Caplan, Tillman, and Reeder (2010). The justification of extension-

ality appealed to the characterization of class as a rigid embodiment of some

objects as they exist. Notice that the status of the axiom of choice becomes

entangled with the status of plural choice. Whether there is a choice function for

a family of nonempty sets turns on whether we are able to select one member of

each plurality involved in the rigid embodiment for each set in the family to

form a plurality with exactly one member in common with each of them.

One may still wonder how to formalize the iterative conception of classes

conceived as rigid embodiments that emerges. One way to proceed is to adapt

the strategy outlined in Button (2021, Appendix A) in order to provide an

axiomatization of set theory in terms exclusively of the relation of immediate

part. Define a class A to be potent if and only if whenever x is an individual

without immediate parts or whenever x is a subclass of some immediate part of

a, then x is an immediate part of a, that is:

8xð: ∃ y y≪ x∨∃ Y CY ∧ x⊆Y ∧Y 2Að Þ→x2AÞ:
Let #A be the class of individuals and subclasses of immediate parts of A, if it

exists, and call a class H a history if every immediate part x of H verifies

x ¼ # x∩ H
� �

. Finally, and following Button (2021), we write that a class S is

a level if, and only if, S ¼ #H for some historyH. The axioms of set theory now

include:

8X ðCX→ð ∃ S Level Sð Þ∧A⊆VÞÞ. Stratification

That is, every class is a subclass of some level. We may supplement the

framework with a further axiom designed to guarantee that whenever some

objects are immediate parts of a level, they form a class:

∃ S ðLevel Sð Þ8y y≺ xx→y≪ Sð Þ→ ∃ x x ¼ xx=E. Separation
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The axioms of separation, union, and foundation are immediate conse-

quences of the hypothesis that classes are formed in stages of the cumulative

hierarchy.72 To secure the pair and power set axioms, we would adopt the

hypothesis that there is no last stage in the hierarchy.73 And the further hypoth-

esis that there is a limit level without an immediate predecessor delivers

a justification of the axiom of infinity.74 The axiom of replacement would be

derivable from the further hypothesis that no class is cofinal with the cumulative

hierarchy, that is, that there is no unboundedmap from a set into the hierarchy of

stages.

6 Conclusion

We have taken the position that the relation of part to whole applies across

ontological categories; classes are, at the very least, parts of themselves. It is

a further question whether classes ever have parts other than themselves, and we

have explored two different stances on which they do. One identifies the parts of

a class with its subclasses, while the other takes the parts of a class to include its

members. Each perspective results in a different mereological reconstruction of

the theory of classes.

How should we decide between the two broad outlooks? We doubt the issue

may be settled by reflection on linguistic evidence or on the common judgments

we are inclined to make when asked to list the parts of a class. Ordinary

judgments often pull us in different directions, and the views under consider-

ation turn out to be selective with respect to which ordinary judgments should

be preserved and which should be dismissed as nonliteral or perhaps as a figure

of speech. The Main Thesis respects the judgment that subclasses are parts

of classes but it dismisses the judgment that classes are composed of their

members as nonliteral or as a figure of speech. One version of Hierarchical

Composition requires one to take the latter judgment at face value and to cast

doubt upon the former. Liberal Hierarchical Composition appears to be able to

take a broader class of ordinary judgments at face value, but at the cost of

a distinction between a relation of immediate part and the more familiar relation

of part to whole.

Nor will the prospects of a mereological foundation for class theory tilt the

scales in one direction rather than another. Unless the relation of member is

itself viewed as a species of part, there is no reason to expect a direct reduction

72 This is fact (1) in Proposition 7.1 in Button (2021).
73 This is fact (2) in Proposition 7.1 in Button (2021).
74 This is fact (3) in Proposition 7.1 in Button (2021).
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of member to the relation of part to whole. Perhaps we should not completely

discard the prospects of a mereological facsimile of the relation of member;

witness, for example, the relation of pseudomember that Forrest (2002b) iden-

tifies against the background of Heyting mereology, but we should not bank on

it either. Each broad outlook of the mereology of classes approaches the

situation differently.

Subscribers to the Main Thesis circumvent the lack of a direct reduction

of member to part by appeal to a singleton operation, and they differ with

respect to their attitude to that operation. While some prefer to take

a structuralist approach to singletons, others seek a reduction to more

familiar operations. Both reactions face difficulties of their own. If one is

prepared to take a structuralist stance on the singleton operation, one may

as well provide a structuralist account of membership and avoid the detour

through singletons. The choice would be between the thesis that classes are

fusions of whatever objects are the output of an operation with certain

structural features, and the thesis that classes are whatever objects play

a role in a certain membership structure. It is not clear how to weigh the

advantages of each tack.

On the other hand, those who seek a reduction of the singleton operation face

the threat of inconsistency: they must restrict the axioms of Classical

Extensional Mereology to accommodate the existence of a total injective map

from objects to mereological atoms. The challenge is to find a restriction that is

neither ad hoc or unmotivated nor unable to deliver a sufficiently rich and varied

domain of classes.

Proponents of Hierarchical Composition take member to be a species of part:

immediate part. They face a different limitative result as they must acknow-

ledge that member, qua immediate part, is not itself directly definable in terms

of part. But this observation has different significance for different theorists.

Some authors, for example, Forrest (2002b), opt for the development of

a mereological surrogate for member defined in terms of nonimmediate part,

whereas others seek to subsume class theory within a more general theory of

immediate part. The first route requires their proponents to rely on the assump-

tion that the universe of individuals is sufficiently rich and varied to support

mereological surrogates for a variety of pure classes, whereas the second

requires one to repurpose mereology primarily as a theory of immediate part,

for example, Caplan, Tillman, and Reeder (2010), whose formal behavior is

significantly different from that of the relation of part to whole. This is, of

course, feasible and the formal framework that results is one in which one may

indeed interpret the theory of classes. But while that may come as no surprise

once one reflects on the formal features of the relation of immediate part, it is
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difficult to avoid the impression that we changed the subject when we intro-

duced hierarchical mereology and offered a reduction of part in terms of

immediate part.

Neither linguistic evidence nor the prospects of a mereological founda-

tion seem, in the end, decisive considerations for one outlook rather than

the other, and they should be weighed against considerations of explana-

tory power and antecedent commitments on the nature of the part-to-whole

relation.

What may predispose theorists toward one or another view of the mereology

of classes is an antecedent broad conception of the part-to-whole relation.

Compositional monists for whom the part-to-whole relation exemplifies the

structure of a Boolean algebra will generally fall in line with the Main Thesis;

the structural parallels between subclass and part will incline them to identify

the former as a special case of the latter.75 Matters will be different for theorists

inclined to discern a hierarchical structure in a whole. For they will have the

resources to assimilate the member relation to that of immediate part. When

combined with compositional pluralism, one may even be in a position to allow

for a multiplicity of senses in which something may be a member of class:

subclasses are parts of a class in a different way in which members are parts of

a class. What we have learned in the course of this investigation is that each

theorist faces further choice points once they situate themselves in the debate

over what are the parts of a class, and one further dimension of evaluation

concerns whether or not the choices ultimately give rise to a powerful and

attractive theory of classes.

We have isolated a further point of contact between the mereology of

classes and the foundations of set theory, one which is independent from the

ambition to identify sets with wholes composed out of parts. For even if one

remains agnostic as to whether sets are special cases of classes, one may

conceive of proper classes, that is, classes that are not sets, as wholes ultim-

ately composed of singletons. The mereological interpretation of proper

classes emerges as an attractive solution to the problem of proper classes in

set theory: whatever the nature of sets, the identification of proper classes with

sums of singletons allows one to motivate a fruitful distinction between the

element–set relation and the relation a member bears to a class. Proper classes

are conceived as parts of the set- theoretic universe, which, unlike sets, are not

formed at stages of the cumulative hierarchy. The crucial question, however, is

75 David Lewis takes the part-to-whole relation to exemplify the structure of a complete Boolean
algebra because he embraces the axiom of fusion, but there is room in principle for a proponent
of the Main Thesis to restrict fusion.

67The Mereology of Classes

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
09

22
41

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009092241


whether there is a principled reason to preclude proper classes from being

elements, and the difficulties associated with a negative answer to that ques-

tion are not dissimilar to the dilemma we encountered when we attempted to

combine the Main Thesis with a perfectly general theory of singleton against

the background of CEM.
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