.28AIO, 28A05

BULL. AUSTRAL. MATH. SOC. VOL. 31 (1985), 325-328.

WILANSKY'S QUERY ON OUTER MEASURES

CHOO-WHAN KIM

On a set X, let μ^* be an outer measure and μ the measure induced by μ^* . We show that if X is a finite set, then the measure μ is saturated. We give two examples of non-regular outer measures on an infinite set X which induce non-saturated and saturated measures, respectively. These answer a query posed by Wilansky.

1. Introduction and preliminaries

Let X be an arbitrary non-empty set and P(X) its power set. On the set X, let μ^* be an outer measure, μ the measure induced by μ^* , μ^+ the outer measure induced by μ , and $\overline{\mu}$ the measure induced by μ^+ . Recently Wilansky posed the following query [3]: must every μ^+ -measurable set be μ^* -measurable?

Let M and M^+ be the σ -algebras of μ^* -measurable and μ^+ -measurable sets, respectively. It is plain that $M \subset M^+$, $\mu^* \leq \mu^+$ on P(X), and $\mu^* = \mu^+$ on M.

Let (X, B, λ) be any measure space. Following Royden [2] we shall say that a subset E of X is locally measurable (with respect to B and λ), if $E \cap B \in B$ for each $B \in B$ with $\lambda(B) < \infty$. Then the family B° of all locally measurable sets is a σ -algebra containing B. The measure λ is called saturated (or a saturated measure on B), if $B = B^{\circ}$. If λ

Received 24 October 1984.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/85 \$A2.00 + 0.00.

is a σ -finite measure, then it is saturated. For any subset E of X, let E' = X - E.

LEMMA 1. If $E \in M^+$ with $\overline{\mu}(E) < \infty$, then $E \in M$.

Proof. Suppose $E \in M^+$ with $\overline{\mu}(E) < \infty$. Let $A \in M$ be such that $E \subset A$ and $\overline{\mu}(E) = \mu(A)$. Then $A - E \in M^+$ and $\overline{\mu}(A-E) = 0$, so that $\mu(A-E) = 0$. Since μ is complete, we have $A - E \in M$, so that $E \in M$.

LEMMA 2. $M^{+} = (M^{+})^{+}$.

Proof. Suppose $E \in (M^+)^{\wedge}$ and $B \in M$ with $\mu(B) < \infty$. Then we have $E \cap B \in M^+$ and $\overline{\mu}(E \cap B) \leq \mu(B) < \infty$, so, by Lemma 1, $E \cap B \in M$. Thus $(M^+)^{\wedge} \subset M^{\wedge}$. Similarly we obtain $M^{\wedge} \subset (M^+)^{\wedge}$.

PROPOSITION 1. $\bar{\mu}$ is a saturated measure on M^+ , and $M^+ = M^{\wedge}$.

Proof. Since $M^+ \subset (M^+)^{\uparrow} = M^{\uparrow}$, it remains to show $M^{\uparrow} \subset M^+$. Suppose $E \in M^{\uparrow}$ and $A \subset X$ with $\mu^+(A) < \infty$. Let $B \in M$ be such that $A \subset B$ and $\mu^+(A) = \mu(B)$. Then both $E \cap B$ and $E' \cap B$ are in M, and

 $\mu^{+}(A) = \mu(B) = \mu(B \cap E) + \mu(B \cap E') \ge \mu^{+}(A \cap E) + \mu^{+}(A \cap E') ,$ so that $E \in M^{+}$. \Box

In view of Proposition 1, the query may be stated as follows: must the measure μ induced by an outer measure μ^* be saturated?

2. Results

We state without proof the following well-known result ([1], [2]).

PROPOSITION 2. The following assertions are equivalent:

(i) $\mu^* = \mu^+$ on P(X);

(ii) for each $E \subset X$, there is $A \in M$ such that $E \subset A$ and $\mu^*(E) = \mu^*(A)$;

(iii) μ^* is induced by a measure on an algebra.

An outer measure μ^* is called regular, if any one of the assertions of Proposition 2 holds. By a minor modification of the proof of Proposition 1 we obtain:

THEOREM 1. If an outer measure μ^* is regular, then the induced measure μ is saturated.

THEOREM 2. For each outer measure μ^* on a finite set X , the induced measure μ is saturated.

Proof. It is enough to prove the theorem in the case in which μ^* is not regular, $\mu^*(X) = \infty$, and X has at least three points. Let $X = \{1, 2, ..., n\}$ $(n \ge 3)$, $Y = \{i \mid i \in X, \mu^*(i) < \infty\}$, and $Z = \{i \mid i \in X, \mu^*(i) = \infty\}$. By our assumption, Y must contain at least two points and Z is not empty. It follows at once that every subset of Z is μ^* -measurable. Since Y also is μ^* -measurable, we have

$$\mathsf{M} = \{ E \cup F \mid E \in Y \cap \mathsf{M}, F \subset Z \}$$

If $A \in M^{\uparrow} = M^{\downarrow}$, then $A \cap Z \in M$ and $A \cap Y \in M^{\downarrow}$. Since $\overline{\mu}(A \cap Y) \leq \mu(Y) < \infty$, it follows from Lemma 1 that $A \cap Y \in M$. Thus $A \in M$.

3. Examples

Here we give two examples of non-regular outer measures on an infinite set which induce non-saturated and saturated measures, respectively.

EXAMPLE 1. Let X be an infinite set. Define the outer measure μ^* by

 $\mu^*(A) = 1 - 2^{-n}$, if A contains n points, $\mu^*(A) = \infty$, if A is infinite.

For each non-empty proper subset E of X, let $A = \{x, y\}$, where $x \in E$ and $y \in E'$. Since

$$\mu^*(A \cap E) + \mu^*(A \cap E') = \mu^*(x) + \mu^*(y) = 1 > \mu^*(A) = 3/4 ,$$

the set E is not in M. Thus M = $\{\emptyset, X\}$.

It follows readily that $\mu^+(\emptyset) = 0$, and $\mu^+(E) = \mu(X) = \infty$ for each $E \neq \emptyset$. That is, μ^+ is the "infinite" measure on P(X). It is plain that $M^+ = P(X)$ so that the induced measure μ is not saturated.

EXAMPLE 2. Let X be an infinite set, $Y = \{a, b\}$, where a and b are distinct points of X, and Z = X - Y. Define the outer measure μ^* by

$$\mu^*(\phi) = 0$$
, $\mu^*(a) = \mu^*(b) = 1$, $\mu^*(Y) = 1.5$, $\mu^*(A) = \infty$,
if $A \cap Z \neq \phi$

Note that both $\{a\}$ and $\{b\}$ are not in M . It is straightforward to show that $Y\in M$, and $E\in M$ for all $E\subset Z$. Thus we obtain

 $M = \{ \emptyset, Y, E, Y \cup E \mid \emptyset \neq E \subset Z \} .$

Since $\mu^{+}(a) = \mu^{+}(b) = \mu(Y) = 1.5$, we have

$$\mu^{+}(Y \cap \{a\}) + \mu^{+}(Y \cap \{b\}) = 2\mu(Y) > \mu(Y) ,$$

so that both $\{a\}$ and $\{b\}$ are not in M^+ . Thus $M = M^+$, and the measure μ is saturated.

References

[1] Paul R. Halmos, Measure theory (Van Nostrand, New York, 1954).

[2] H.L. Royden, *Real analysis*, 2nd ed. (Macmillan, New York, 1968).

[3] A. Wilansky, "Query 305", Notices Amer. Math. Soc. 31 (1984), 376.

Department of Mathematics and Statistics, Simon Fraser University, Burnaby, British Columbia V5A IS6, Canada.